skip to main content


Title: HIGH TEMPERATURE CHARACTERIZATION OF FIBER BRAGG GRATING SENSORS EMBEDDED INTO METALLIC STRUCTURES THROUGH ULTRASONIC ADDITIVE MANUFACTURING
Embedded fiber Bragg grating (FBG) sensors are attractive for in-situ structural monitoring, especially in fiber reinforced composites. Their implementation in metallic structures is hindered by the thermal limit of the protective coating, typically a polymer material. The purpose of this study is to demonstrate the embedding of FBG sensors into metals with the ultimate objective of using FBG sensors for structural health monitoring of metallic structures. To that end, ultrasonic additive manufacturing (UAM) is utilized. UAM is a solid-state manufacturing process based on ultrasonic metal welding that allows for layered addition of metallic foils without melting. Embedding FBGs through UAM is shown to result in total cross-sectional encapsulation of the sensors within the metal matrix, which encourages uniform strain transfer. Since the UAM process takes place at essentially room temperature, the industry standard acrylate protective coating can be used rather than requiring a new coating applied to the FBGs prior to embedment. Measurements presented in this paper show that UAM-embedded FBG sensors accurately track strain at temperatures higher than 400 C. The data reveals the conditions under which detrimental wavelength hopping takes place due to non-uniformity of the load transferred to the FBG. Further, optical cross-sectioning of the test specimens shows inhibition of the thermal degradation of the protective coating. It is hypothesized that the lack of an atmosphere around the fully-encapsulated FBGs makes it possible to operate the sensors at temperatures well above what has been possible until now. Embedded FBGs were shown to retain their coatings when subjected to a thermal loading that would result in over 50 percent degradation (by volume and mass) in atmospherically exposed fiber.  more » « less
Award ID(s):
1738723
NSF-PAR ID:
10060497
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
Volume:
SMASIS2017
Issue:
3840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural health monitoring (SHM) is a rapidly growing field focused on detecting damage in complex systems before catastrophic failure occurs. Advanced sensor technologies are necessary to fully harness SHM in applications involving harsh or remote environments, life-critical systems, mass-production vehicles, robotic systems, and others. Fiber Bragg Grating (FBG) sensors are attractive for in-situ health monitoring due to their resistance to electromagnetic noise, ability to be multiplexed, and accurate real-time operation. Ultrasonic additive manufacturing (UAM) has been demonstrated for solid-state fabrication of 3D structures with embedded FBG sensors. In this paper, UAM-embedded FBG sensors are investigated with a focus on SHM applications. FBG sensors embedded in an aluminum matrix 3 mm from the initiation site are shown to resolve a minimum crack length of 0.286 ± 0.033 mm and track crack growth until near failure. Accurate crack detection is also demonstrated from FBGs placed 6 mm and 9 mm from the crack initiation site. Regular acrylate-coated FBG sensors are shown to repeatably work at temperatures up to 300 ∘ C once embedded with the UAM process. 
    more » « less
  2. Meyendorf, Norbert G. ; Farhangdoust, Saman (Ed.)
    Metal-matrix composites with active components have been investigated as a way to functionalize metals. As opposed to surface-mounted approaches, smart materials embedded in metals can be effectively shielded against the environment while providing in-situ sensing, health monitoring, actuation, or energy harvesting functions. Typical manufacturing approaches can be problematic, however, in that they may physically damage the smart material or degrade its electromechanical properties. For instance, non-resin-based embedment procedures such as powder metallurgy involve isostatic compression and diffusion bonding, leading to high process temperatures and breakdown of the electromechanical properties of the active component to be embedded. This paper presents the development and characterization of an aluminum-matrix composite embedded with piezoelectric polyvinylidene fluoride (PVDF) sensors using ultrasonic additive manufacturing (UAM). UAM incorporates the principles of solid-state, ultrasonic metal welding and subtractive processes to fabricate metal-matrices with seamlessly embedded smart materials and without thermal loading. As implemented in this study, the UAM process uses as-received, commercial Al 6061 tape foilstock and TE Connectivity PVDF film. In order to increase the mechanical coupling between the sensor and the metal-matrix without the aid of adhesives, the PVDF sensor is embedded with an empirically optimized pre-compression defined by the tape foils welded above the sensor. The specimen is characterized by tensile (d31 mode), bending (d31 mode), and compression tests (d33 mode) to evaluate its functional performance. Within the investigated load range, the specimen exhibits open-circuit sensitivities of 4.6 mV/N under uniaxial tension and 9.7 mV/N under compressive impulse tests with better than 95% linearity and frequency bandwidth of several kilohertz. The technology presented in this study could be applied for load and tactile sensing, impact detection and localization, thermal measurements, energy harvesting, and non-destructive testing applications. 
    more » « less
  3. Fiber Bragg grating (FBG) sensors have been applied to assess strains, stresses, loads, corrosion, and temperature for structural health monitoring (SHM) of steel infrastructure, such as buildings, bridges, and pipelines. Since a single FBG sensor measures a particular parameter at a local spot, it is challenging to detect different types of anomalies and interactions of anomalies. This paper presents an approach to assess interactive anomalies caused by mechanical loading and corrosion on epoxy coated steel substrates using FBG sensors in real time. Experiments were performed by comparing the monitored center wavelength changes in the conditions with loading only, corrosion only, and simultaneous loading and corrosion. The theoretical and experimental results indicated that there were significant interactive influences between loading and corrosion for steel substrates. Loading accelerated the progress of corrosion for the epoxy coated steel substrate, especially when delamination in the epoxy coating was noticed. Through the real-time monitoring from the FBG sensors, the interactions between the anomalies induced by the loading and corrosion can be quantitatively evaluated through the corrosion depth and the loading contact length. These fundamental understandings of the interactions of different anomalies on steel structures can provide valuable information to engineers for better management of steel structures. 
    more » « less
  4. This study presents an experimental investigation on the combined effect of mechanical loads and corrosion using the designed polytetrafluoroethylene tube-packaged fiber Bragg grating (FBG) sensors, as to implement long-gauge FBG (LFBG) sensors in corrosion detection practices for structural health monitoring. A simplified LFBG-based sensing model was proposed for strain measurement in terms of the Bragg wavelength change. Correspondingly, a systematic corrosion assessment strategy was developed to estimate corrosion severity and average corrosion rate. Upon this, the experimental study was performed on epoxy-coated steel specimens embedded with LFBG sensors, where the loading, corrosion, and combined loading–corrosion tests were used to explore the effect of mechanical loads on corrosion behavior. Test results revealed that the specimens subjected to combined conditions exhibited more severe corrosion damage. The maximum mass loss was observed to be 1.82 and 2.43 in percentage under individual corrosion and combined loading–corrosion conditions, respectively. Also, the pit depth under combined conditions was found to develop rapidly in the early stage. The pit depth severity ratio was around 0.2–0.8 during the 67 days of exposure, indicating an evident impact of loading on corrosion severity. Furthermore, the maximum average corrosion rate under combined conditions was found to be 5.66 times that under individual corrosion conditions.

     
    more » « less
  5. Coatings, either soft or hard, are commonly used to protect steel against corrosion for longer service life. With coatings, assessing the corrosion behavior and status of the substrate is challenging without destructive analysis. In this paper, fiber Bragg (FBG) grating sensors were proposed to nondestructively evaluate the corrosion behavior of steel coated with two popular coatings, including the polymeric and wire arc sprayed Al-Zn coating. Laboratory accelerated corrosion tests demonstrated that the embedded FBG sensors inside both the soft and hard coatings can effectively quantify the corrosion rate, monitor the corrosion progress, and detect the coating damages and crack propagation of coated steel in real time. The laboratory electrochemical corrosion test on the wire arc sprayed Al-Zn coating validated the proposed embedded FBG sensor method with a good agreement in comparison. The proposed sensing platform provides an alternative nondestructive real-time corrosion assessment approach for coated steel in the field. 
    more » « less