skip to main content


Title: Anther development—The long road to making pollen
Abstract Anthers express the most genes of any plant organ, and their development involves sequential redifferentiation of many cell types to perform distinctive roles from inception through pollen dispersal. Agricultural yield and plant breeding depend on understanding and consequently manipulating anthers, a compelling motivation for basic plant biology research to contribute. After stamen initiation, two theca form at the tip, and each forms an adaxial and abaxial lobe composed of pluripotent Layer 1-derived and Layer 2-derived cells. After signal perception or self-organization, germinal cells are specified from Layer 2-derived cells, and these secrete a protein ligand that triggers somatic differentiation of their neighbors. Historically, recovery of male-sterile mutants has been the starting point for studying anther biology. Many genes and some genetic pathways have well-defined functions in orchestrating subsequent cell fate and differentiation events. Today, new tools are providing more detailed information; for example, the developmental trajectory of germinal cells illustrates the power of single cell RNA-seq to dissect the complex journey of one cell type. We highlight ambiguities and gaps in available data to encourage attention on important unresolved issues.  more » « less
Award ID(s):
1754097 1907220
NSF-PAR ID:
10404690
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Plant Cell
Volume:
34
Issue:
12
ISSN:
1040-4651
Page Range / eLocation ID:
4677 to 4695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40–50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. Conclusions Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production. 
    more » « less
  2. INTRODUCTION Balance between excitatory and inhibitory neuron (interneuron) populations in the cortex promotes normal brain function. Interneurons are primarily generated in the medial, caudal, and lateral ganglionic eminences (MGE, CGE, and LGE) of the ventral embryonic forebrain; these subregions give rise to distinct interneuron subpopulations. In rodents, the MGE generates cortical interneurons, the parvalbumin + (PV + ) and somatostatin + (SST + ) subtypes that connect with excitatory neurons to regulate their activity. Defects in interneuron production have been implicated in neurodevelopmental and psychiatric disorders including autism, epilepsy, and schizophrenia. RATIONALE How does the human MGE (hMGE) produce the number of interneurons required to populate the forebrain? The hMGE contains progenitor clusters distinct from what has been observed in the rodent MGE and other germinal zones of the human brain. This cytoarchitecture could be the key to understanding interneuron neurogenesis. We investigated the cellular and molecular properties of different compartments within the developing hMGE, from 14 gestational weeks (GW) to 39 GW (term), to study their contribution to the production of inhibitory interneurons. We developed a xenotransplantation assay to follow the migration and maturation of the human interneurons derived from this germinal region. RESULTS Within the hMGE, densely packed aggregates (nests) of doublecortin + (DCX + ) and LHX6 + cells were surrounded by nestin + progenitor cells and their processes. These DCX + cell–enriched nests (DENs) were observed in the hMGE but not in the adjacent LGE. We found that cells within DENs expressed molecular markers associated with young neurons, such as DCX, and polysialylated neural cell adhesion molecule (PSA-NCAM). A subpopulation also expressed Ki-67, a marker of proliferation; therefore, we refer to these cells as neuroblasts. A fraction of DCX + cells inside DENs expressed SOX2 and E2F1, transcription factors associated with progenitor and proliferative properties. More than 20% of DCX + cells in the hMGE were dividing, specifically within DENs. Proliferating neuroblasts in DENs persisted in the hMGE throughout prenatal human brain development. The division of DCX + cells was confirmed by transmission electron microscopy and time-lapse microscopy. Electron microscopy revealed adhesion contacts between cells within DENs, providing multiple sites to anchor DEN cells together. Neuroblasts within DENs express PCDH19, and nestin + progenitors surrounding DENs express PCDH10; these findings suggest a role for differential cell adhesion in DEN formation and maintenance. When transplanted into the neonatal mouse brain, dissociated hMGE cells reformed DENs containing proliferative DCX + cells, similar to DENs observed in the prenatal human brain. This suggests that DENs are generated by cell-autonomous mechanisms. In addition to forming DENs, transplanted hMGE-derived neuroblasts generated young neurons that migrated extensively into cortical and subcortical regions in the host mouse brain. One year after transplantation, these neuroblasts had differentiated into distinct γ-aminobutyric acid–expressing (GABAergic) interneuron subtypes, including SST + and PV + cells, that showed morphological and functional maturation. CONCLUSION The hMGE harbors DENs, where cells expressing early neuronal markers continue to divide and produce GABAergic interneurons. This MGE-specific arrangement of neuroblasts in the human brain is present until birth, supporting expanded neurogenesis for inhibitory neurons. Given the robust neurogenic output from this region, knowledge of the mechanisms underlying cortical interneuron production in the hMGE will provide insights into the cell types and developmental periods that are most vulnerable to genetic or environmental insults. Nests of DCX + cells in the ventral prenatal brain. Schematic of a coronal view of the embryonic human forebrain showing the medial ganglionic eminence (MGE, green), with nests of DCX + cells (DENs, green). Nestin + progenitor cells (blue) are present within the VZ and iSVZ and are intercalated in the oSVZ (where DENs reside). The initial segment of the oSVZ contains palisades of nestin + progenitors referred to as type I clusters (light blue cells) around DENs. In the outer part of the oSVZ, DENs transition to chains of migrating DCX + cells; surrounding nestin + progenitors are arranged into groups of cells referred to as type II clusters (white cells). In addition to proliferation of nestin + progenitors, cell division is present among DCX + cells within DENs, suggesting multiple progenitor states for the generation of MGE-derived interneurons in the human forebrain. ILLUSTRATION: NOEL SIRIVANSANTI 
    more » « less
  3. Abstract

    Antibiotic‐resistant bacteria are a major global health threat that continues to rise due to a lack of effective vaccines. Of concern areKlebsiella pneumoniae(K. pneumoniae) that fail to induce in vivo germinal center B cell responses, which facilitate antibody production to fight infection. Immunotherapies using antibodies targeting antibiotic‐resistant bacteria are emerging as promising alternatives, however, they cannot be efficiently derived ex vivo, necessitating the need for immune technologies to develop therapeutics. Here, polyethylene glycol (PEG)‐based immune organoids are developed to elucidate the effects of polymer end‐point chemistry, integrin ligands, and mode ofK. pneumoniaeantigen presentation on germinal center‐like B cell phenotype and epigenetics, to better define the lymph node microenvironment factors regulating ex vivo germinal center dynamics. Notably, PEG vinyl sulfone or acrylate fail to sustain primary immune cells, but functionalization with maleimide (PEG‐4MAL) leads to B cell expansion and germinal center‐like induction. RNA sequencing analysis of lymph node stromal and germinal center B cells shows niche associated heterogeneity of integrin‐related genes. Incorporation of niche‐mimicking peptides reveals that collagen‐1 promotes germinal center‐like dynamics and epigenetics. PEG‐4MAL organoids elucidate the impact ofK. pneumoniaeouter membrane‐embedded protein antigen versus soluble antigen presentation on germinal centers and preserve the response across young and aged mice.

     
    more » « less
  4. In multicellular organisms, the entry into meiosis is a complex process characterized by increasing meiotic specialization. Using single-cell RNA sequencing, we reconstructed the developmental program into maize male meiosis. A smooth continuum of expression stages before meiosis was followed by a two-step transcriptome reorganization in leptotene, during which 26.7% of transcripts changed in abundance by twofold or more. Analysis of cell-cycle gene expression indicated that nearly all pregerminal cells proliferate, eliminating a stem-cell model to generate meiotic cells. Mutants defective in somatic differentiation or meiotic commitment expressed transcripts normally present in early meiosis after a delay; thus, the germinal transcriptional program is cell autonomous and can proceed despite meiotic failure. 
    more » « less
  5. Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled. 
    more » « less