skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients’ induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.  more » « less
Award ID(s):
1928855 1919830
PAR ID:
10437921
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Cells
Volume:
12
Issue:
10
ISSN:
2073-4409
Page Range / eLocation ID:
1442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelidPristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such asvasa,piwiandnanoshomologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, inpiwi+cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories frompiwi+cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that apiwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation. 
    more » « less
  2. Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications. 
    more » « less
  3. Biomaterial-assisted stem cell therapies hold immense promise for regenerative medicine, yet clinical translation remains challenging. This review focuses on recent advances and persistent limitations in applying induced pluripotent stem cells (iPSCs), endothelial colony-forming cells (ECFCs), multipotent mesenchymal stromal cells (MSCs), and embryonic stem cells (ESCs) within engineered microenvironments. We introduce a novel “bottom-up” approach to biomaterial design. This approach focuses first on understanding the fundamental biological properties and microenvironmental needs of stem cells, then engineering cell-instructive biomaterials to support them. Unlike conventional methods that adapt cells to pre-existing materials, this strategy prioritizes designing biomaterials from the molecular level upward to address key challenges, including differentiation variability, incomplete matching of iPSCs to somatic counterparts, functional maturity of derived cells, and survival of ECFCs/MSCs in therapeutic niches. By replicating lineage-specific mechanical, chemical, and spatial cues, these tailored biomaterials enhance differentiation fidelity, reprogramming efficiency, and functional integration. This paradigm shift from passive scaffolds to dynamic, cell-instructive platforms bridges critical gaps between laboratory success and clinical translation, offering a transformative roadmap for regenerative medicine and tissue engineering. 
    more » « less
  4. Abstract Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC‐to‐iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage‐specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage‐specific iMSCs, and six source‐specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo. 
    more » « less
  5. Abstract Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell‐derived CFBs, epicardial (EpiC‐FB), and second heart field (SHF‐FB) impacts transcriptional and functional properties. Both EpiC‐FBs and SHF‐FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell‐derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC‐FBs exhibiting higher stress‐induced activation potential akin to myofibroblasts and SHF‐FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC‐FBs have utility in modeling fibrotic diseases while SHF‐FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection. 
    more » « less