skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Temporal disaggregation of hourly precipitation under changing climate over the Southeast United States
Abstract Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970–1999) and projected (2030–2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution.  more » « less
Award ID(s):
2144293 1922687
NSF-PAR ID:
10404866
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies of projected changes in tropical cyclones under anthropogenic climate change, as well as their modulation by internal climate modes, make use of global climate models. To this end, tropical cyclones can be tracked in the output of higher resolution models. Using climate models to make future projections of tropical cyclones relies upon having a baseline of the characteristics of model storms under the current climate. This study focuses on two high-resolution datasets – the NASA GEOS-5 Model (Goddard Earth Observing System Model, Version 5) and the MERRA-2 Reanalysis (Modern-Era Retrospective analysis for Research and Applications, Version 2). Both of these datasets were created using exactly the same atmospheric model during the same period. However, while GEOS-5 is a free-running atmospheric model forced only with sea surface temperature, MERRA-2 is a reanalysis product, i.e. the model assimilates data from a large variety of data sources. Thus, by comparing tropical cyclones tracked in these datasets to each other and global best track datasets in the period 1980-1999, this project aims to evaluate 1) the sensitivity of this model to how it is forced and 2) how well the storms tracked in GEOS-5 and MERRA-2 replicate observed tropical cyclones’ characteristics. We used two different tracking schemes on both datasets and found no significant difference in the performance of the model and the reanalysis in simulating tropical cyclones. Standard diagnostics for tropical cyclones, such as the mean number, intensity distribution, as well as their interannual variability are very similar in the free-running model and the reanalysis. Both GEOS-5 and MERRA-2 show a bias towards weaker tropical cyclones than observed and GEOS-5 has storms that occur closer to the equator than in the observed record. Neither GEOS-5 nor MERRA-2 accurately reproduce tropical cyclone modulation by ENSO. Additionally, comparison of MERRA-2 to other reanalysis datasets shows that MERRA-2 on average generates fewer total but also more intense storms than the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) and Japanese 55-Year Reanalysis (JRA-55). Further research must be performed to understand why this data assimilation is failing to provide a positive impact on the tropical cyclone simulation in this model. 
    more » « less
  2. Extratropical cyclones develop in regions of enhanced baroclinicity and progress along climatological storm tracks. Numerous studies have noted an influence of terrestrial snow cover on atmospheric baroclinicity. However, these studies have less typically examined the role that continental snow cover extent and changes anticipated with anthropogenic climate change have on cyclones’ intensities, trajectories, and precipitation characteristics. Here, we examined how projected future poleward shifts in North American snow extent influence extratropical cyclones. We imposed 10th, 50th, and 90th percentile values of snow retreat between the late 20th and 21st centuries as projected by 14 Coupled Model Intercomparison Project Phase Five (CMIP5) models to alter snow extent underlying 15 historical cold-season cyclones that tracked over the North American Great Plains and were faithfully reproduced in control model cases, providing a comprehensive set of model runs to evaluate hypotheses. Simulations by the Advanced Research version of the Weather Research and Forecast Model (WRF-ARW) were initialized at four days prior to cyclogenesis. Cyclone trajectories moved on average poleward (μ = 27 +/− σ = 17 km) in response to reduced snow extent while the maximum sea-level pressure deepened (μ = −0.48 +/− σ = 0.8 hPa) with greater snow removed. A significant linear correlation was observed between the area of snow removed and mean trajectory deviation (r2 = 0.23), especially in mid-winter (r2 = 0.59), as well as a similar relationship for maximum change in sea-level pressure (r2 = 0.17). Across all simulations, 82% of the perturbed simulation cyclones decreased in average central sea-level pressure (SLP) compared to the corresponding control simulation. Near-surface wind speed increased, as did precipitation, in 86% of cases with a preferred phase change from the solid to liquid state due to warming, although the trends did not correlate with the snow retreat magnitude. Our results, consistent with prior studies noting some role for the enhanced baroclinity of the snow line in modulating storm track and intensity, provide a benchmark to evaluate future snow cover retreat impacts on mid-latitude weather systems. 
    more » « less
  3. Streamflow is one the most important variables controlling and maintaining aquatic ecosystem integrity, diversity, and sustainability. This study identified and quantified changes in 34 hydrologic characteristics and parameters at 30 long term (1939–2016) discharge stations in the Southeast Atlantic and Gulf Coast Hydrologic Region (Region 3) using Indicators of Hydrologic Alteration (IHA) variables. The southeastern United States (SEUS) is a biodiversity hotspot, and the region has experienced a number of rapid land use/land cover changes with multiple primary drivers. Studies in the SEUS have been mostly localized on specific rivers, reservoir catchments and/or species, but the overall region has not been assessed for the long-term period of 1939–2016 for multiple hydrologic characteristic parameters. The objectives of the study were to provide an overview of multiple river basins and 31 hydrologic characteristic parameters of streamflow in Region 3 for a longer period and to develop a conceptual map of impacts of selected stressors and changes in hydrology and climate in the SEUS. A seven step procedure was used to accomplish these objectively: Step 1: Download data from the 30 USGS gauging stations. Steps 2 and 3: Select and analyze the 31 IHA parameters using boxplots, scatter plots, and PDFs. Steps 4 and 5: Synthesize the drivers of changes and alterations and the various change points in streamflow in the literature. Step 6: Synthesize the climate of the SEUS in terms of temperature and precipitation changes. Step 7: Develop a conceptual map of impacts of selected stressors on hydrology using Driver–Pressure–State-Impact–Response (DPSIR) framework and IHA parameters. The 31 IHA parameters were analyzed. The meta-analysis of literature in the SEUS revealed the precipitation changes observed ranged from −30% to +35% and temperature changes from −2 °C to 6 °C by 2099. The fiftieth percentile of the Global Climate Models (GCM) predict no precipitation change and an increase in the temperature of 2.5 °C in the region by 2099. Among the GCMs, the 5th and 95th percentile of precipitation changes range between −40% and 110% and temperature changes between −2 °C and 6 °C by 2099. Meta-analysis of land use/land cover show the region has experienced changes. A number of rapid land use/land cover changes in 1957, 1970, and 1998 are some of the change points documented in the literature for precipitation and streamflow in the region. A conceptual map was developed to represent the impacts of selected drivers and the changes in hydrology and climate in the study region for three land use/land cover categories in three different periods. 
    more » « less
  4. Abstract

    Tropical regions are experiencing high rates of forest cover loss coupled with changes in the volume and timing of rainfall. These shifts can compromise streamflow and water provision, highlighting the need to identify how forest cover influences streamflow generation under variable rainfall conditions. Although rainfall is the key driver of streamflow regimes, the role of forests is less clear, particularly in tropical regions where forest loss is an ongoing risk. Forest cover loss alters evapotranspiration, rainfall infiltration and storage, and may increase stream ecosystem vulnerability to rainfall extremes. Puerto Rico, an island with spatially heterogenous forest cover and a marked geographic rainfall gradient, is projected to experience more frequent droughts and flash flooding. Using 15‐min streamflow data collected between 2005 and 2016 from 20 US Geological Survey stream gages and 3‐hourly Multi‐Source Weighted‐Ensemble Precipitation rainfall estimates, we utilized flow‐duration curves and linear mixed regression models to examine the role of forest cover in regulating the timing and volume of streamflow. The mixed model approach helps to account for differences in watershed characteristics. We determined the effects of rainfall and forest cover on low and peak flows in Puerto Rican streams, then evaluated changes in these relationships under dry and wet antecedent rainfall conditions. Watersheds with high forest cover had consistently greater low and peak streamflow than deforested ones under all rainfall conditions, although the effect was more marked during wet antecedent conditions, suggesting that peak flow is largely the result of saturation excess overland flow. During dry antecedent rainfall conditions, highly forested watersheds had higher streamflow than deforested ones, suggesting greater hillslope storage and release may also be at play. Our results demonstrate that forest cover generated a net increase in hillslope infiltration and storage and may lessen drought impacts on streamflow in Puerto Rico. Resilience to prolonged drought may be limited by finite water storage potential in this steep, mountainous setting, highlighting maintenance of forest cover as an important water management strategy to increase infiltration.

     
    more » « less
  5. Abstract

    The middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte–Caballo Reservoir system (southern New Mexico). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 global climate models, coupled to a surface hydrologic model. Results suggest that the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021–70) will decrease relative to the past 50 years (1971–2020). The modeling also projects an increase in multiyear drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs than will changes in local evaporation and precipitation from the reservoir surfaces.

     
    more » « less