skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A seamless approach for evaluating climate models across spatial scales
In regions of the world where topography varies significantly with distance, most global climate models (GCMs) have spatial resolutions that are too coarse to accurately simulate key meteorological variables that are influenced by topography, such as clouds, precipitation, and surface temperatures. One approach to tackle this challenge is to run climate models of sufficiently high resolution in those topographically complex regions such as the North American Regionally Refined Model (NARRM) subset of the Department of Energy’s (DOE) Energy Exascale Earth System Model version 2 (E3SM v2). Although high-resolution simulations are expected to provide unprecedented details of atmospheric processes, running models at such high resolutions remains computationally expensive compared to lower-resolution models such as the E3SM Low Resolution (LR). Moreover, because regionally refined and high-resolution GCMs are relatively new, there are a limited number of observational datasets and frameworks available for evaluating climate models with regionally varying spatial resolutions. As such, we developed a new framework to quantify the added value of high spatial resolution in simulating precipitation over the contiguous United States (CONUS). To determine its viability, we applied the framework to two model simulations and an observational dataset. We first remapped all the data into Hierarchical Equal-Area Iso-Latitude Pixelization (HEALPix) pixels. HEALPix offers several mathematical properties that enable seamless evaluation of climate models across different spatial resolutions including its equal-area and partitioning properties. The remapped HEALPix-based data are used to show how the spatial variability of both observed and simulated precipitation changes with resolution increases. This study provides valuable insights into the requirements for achieving accurate simulations of precipitation patterns over the CONUS. It highlights the importance of allocating sufficient computational resources to run climate models at higher temporal and spatial resolutions to capture spatial patterns effectively. Furthermore, the study demonstrates the effectiveness of the HEALPix framework in evaluating precipitation simulations across different spatial resolutions. This framework offers a viable approach for comparing observed and simulated data when dealing with datasets of varying spatial resolutions. By employing this framework, researchers can extend its usage to other climate variables, datasets, and disciplines that require comparing datasets with different spatial resolutions.  more » « less
Award ID(s):
2214697 1917781
PAR ID:
10497881
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
frontiers
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
11
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate and weather data such as precipitation derived from Global Climate Models (GCMs) and satellite observations are essential for the global and local hydrological assessment. However, most climatic popular precipitation products (with spatial resolutions coarser than 10km) are too coarse for local impact studies and require “downscaling” to obtain higher resolutions. Traditional precipitation downscaling methods such as statistical and dynamic downscaling require an input of additional meteorological variables, and very few are applicable for downscaling hourly precipitation for higher spatial resolution. Based on dynamic dictionary learning, we propose a new downscaling method, PreciPatch, to address this challenge by producing spatially distributed higher resolution precipitation fields with only precipitation input from GCMs at hourly temporal resolution and a large geographical extent. Using aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) data, an experiment was conducted to evaluate the performance of PreciPatch, in comparison with bicubic interpolation using RainFARM—a stochastic downscaling method, and DeepSD—a Super-Resolution Convolutional Neural Network (SRCNN) based downscaling method. PreciPatch demonstrates better performance than other methods for downscaling short-duration precipitation events (used historical data from 2014 to 2017 as the training set to estimate high-resolution hourly events in 2018). 
    more » « less
  2. Abstract Global climate models (GCMs) and Earth system models (ESMs) exhibit biases, with resolutions too coarse to capture local variability for fine-scale, reliable drought and climate impact assessment. However, conventional bias correction approaches may cause implausible climate change signals due to unrealistic representations of spatial and intervariable dependences. While purely data-driven deep learning has achieved significant progress in improving climate and earth system simulations and predictions, they cannot reliably learn the circumstances (e.g., extremes) that are largely unseen in historical climate but likely becoming more frequent in the future climate (i.e., climate non-stationarity). This study shows an integrated trend-preserving deep learning approach that can address the spatial and intervariable dependences and climate non-stationarity issues for downscaling and bias correcting GCMs/ESMs. Here we combine the super-resolution deep residual network (SRDRN) with the trend-preserving quantile delta mapping (QDM) to downscale and bias correct six primary climate variables at once (including daily precipitation, maximum temperature, minimum temperature, relative humidity, solar radiation, and wind speed) from five state-of-the-art GCMs/ESMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that the SRDRN-QDM approach greatly reduced GCMs/ESMs biases in spatial and intervariable dependences while significantly better-reducing biases in extremes compared to deep learning. The estimated drought based on the six bias-corrected and downscaled variables captured the observed drought intensity and frequency, which outperformed state-of-the-art multivariate bias correction approaches, demonstrating its capability for correcting GCMs/ESMs biases in spatial and multivariable dependences and extremes. 
    more » « less
  3. Abstract Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970–1999) and projected (2030–2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution. 
    more » « less
  4. Abstract. Global climate models (GCMs) have advanced in many ways ascomputing power has allowed more complexity and finer resolutions. As GCMsreach storm-resolving scales, they need to be able to produce realisticprecipitation intensity, duration, and frequency at fine scales withconsideration of scale-aware parameterization. This study uses astate-of-the-art storm-resolving GCM with a nonhydrostatic dynamical core – theModel for Prediction Across Scales (MPAS), incorporated in the atmosphericcomponent (Community Atmosphere Model, CAM) of the open-source CommunityEarth System Model (CESM), within the System for Integrated Modeling of theAtmosphere (SIMA) framework (referred to as SIMA-MPAS). At uniform coarse (here, at 120 km) gridresolution, the SIMA-MPAS configuration is comparable to the standardhydrostatic CESM (with a finite-volume (FV) dynamical core) with reasonableenergy and mass conservation on climatological timescales. With thecomparable energy and mass balance performance between CAM-FV (workhorse dynamical core) and SIMA-MPAS (newly developed dynamical core), it gives confidence inSIMA-MPAS's applications at a finer resolution. To evaluate this, we focuson how the SIMA-MPAS model performs when reaching a storm-resolving scale at3 km. To do this efficiently, we compose a case study using a SIMA-MPASvariable-resolution configuration with a refined mesh of 3 km covering thewestern USA and 60 km over the rest of the globe. We evaluated the modelperformance using satellite and station-based gridded observations withcomparison to a traditional regional climate model (WRF, the WeatherResearch and Forecasting model). Our results show realistic representationsof precipitation over the refined complex terrains temporally and spatially.Along with much improved near-surface temperature, realistic topography, andland–air interactions, we also demonstrate significantly enhanced snowpackdistributions. This work illustrates that the global SIMA-MPAS atstorm-resolving resolution can produce much more realistic regional climatevariability, fine-scale features, and extremes to advance both climate andweather studies. This next-generation storm-resolving model could ultimatelybridge large-scale forcing constraints and better inform climate impactsand weather predictions across scales. 
    more » « less
  5. Abstract. Atmospheric rivers (ARs) are synoptic-scale features that transport moisture poleward and may cause short-duration, high-volume melt events on the Greenland ice sheet (GrIS). In contrast with traditional climate modeling studies that rely on coarse (1 to 2°) grids, this project investigates the effectiveness of variable-resolution (VR) grids in modeling ARs and their subsequent precipitation using refined grid spacing (0.25 and 0.125°) around the GrIS and 1° grid spacing for the rest of the globe in a coupled land–atmosphere model simulation. VR simulations from the Community Earth System Model version 2.2 (CESM2.2) bridge the gap between the limitations of global and regional climate models while maximizing computational efficiency. ARs from CESM2.2 simulations using three grid types (VR, latitude–longitude, and quasi-uniform) with varying resolutions are compared to outputs from two observation-based reanalysis products, ERA5 and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), using a study period of 1 January 1979 to 31 December 1998. The VR grids produce ARs with smaller areal extents and lower area-integrated precipitation over the GrIS compared to latitude–longitude and quasi-uniform grids. We hypothesize that the smaller areal AR extents in VR grids are due to the refined topography resolved in these grids. In contrast, topographic smoothing in coarser-resolution latitude–longitude and quasi-uniform grids allows ARs to penetrate further inland on the GrIS. Precipitation rates are similar for the VR, latitude–longitude, and quasi-uniform grids; thus the reduced areal extent in VR grids produces lower area-integrated precipitation. The VR grids most closely match the AR overlap extent and precipitation in ERA5 and MERRA-2, suggesting the most realistic behavior among the three configurations. 
    more » « less