skip to main content


This content will become publicly available on October 6, 2024

Title: A seamless approach for evaluating climate models across spatial scales

In regions of the world where topography varies significantly with distance, most global climate models (GCMs) have spatial resolutions that are too coarse to accurately simulate key meteorological variables that are influenced by topography, such as clouds, precipitation, and surface temperatures. One approach to tackle this challenge is to run climate models of sufficiently high resolution in those topographically complex regions such as the North American Regionally Refined Model (NARRM) subset of the Department of Energy’s (DOE) Energy Exascale Earth System Model version 2 (E3SM v2). Although high-resolution simulations are expected to provide unprecedented details of atmospheric processes, running models at such high resolutions remains computationally expensive compared to lower-resolution models such as the E3SM Low Resolution (LR). Moreover, because regionally refined and high-resolution GCMs are relatively new, there are a limited number of observational datasets and frameworks available for evaluating climate models with regionally varying spatial resolutions. As such, we developed a new framework to quantify the added value of high spatial resolution in simulating precipitation over the contiguous United States (CONUS). To determine its viability, we applied the framework to two model simulations and an observational dataset. We first remapped all the data into Hierarchical Equal-Area Iso-Latitude Pixelization (HEALPix) pixels. HEALPix offers several mathematical properties that enable seamless evaluation of climate models across different spatial resolutions including its equal-area and partitioning properties. The remapped HEALPix-based data are used to show how the spatial variability of both observed and simulated precipitation changes with resolution increases. This study provides valuable insights into the requirements for achieving accurate simulations of precipitation patterns over the CONUS. It highlights the importance of allocating sufficient computational resources to run climate models at higher temporal and spatial resolutions to capture spatial patterns effectively. Furthermore, the study demonstrates the effectiveness of the HEALPix framework in evaluating precipitation simulations across different spatial resolutions. This framework offers a viable approach for comparing observed and simulated data when dealing with datasets of varying spatial resolutions. By employing this framework, researchers can extend its usage to other climate variables, datasets, and disciplines that require comparing datasets with different spatial resolutions.

 
more » « less
Award ID(s):
2214697 1917781
NSF-PAR ID:
10497881
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
frontiers
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
11
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate and weather data such as precipitation derived from Global Climate Models (GCMs) and satellite observations are essential for the global and local hydrological assessment. However, most climatic popular precipitation products (with spatial resolutions coarser than 10km) are too coarse for local impact studies and require “downscaling” to obtain higher resolutions. Traditional precipitation downscaling methods such as statistical and dynamic downscaling require an input of additional meteorological variables, and very few are applicable for downscaling hourly precipitation for higher spatial resolution. Based on dynamic dictionary learning, we propose a new downscaling method, PreciPatch, to address this challenge by producing spatially distributed higher resolution precipitation fields with only precipitation input from GCMs at hourly temporal resolution and a large geographical extent. Using aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) data, an experiment was conducted to evaluate the performance of PreciPatch, in comparison with bicubic interpolation using RainFARM—a stochastic downscaling method, and DeepSD—a Super-Resolution Convolutional Neural Network (SRCNN) based downscaling method. PreciPatch demonstrates better performance than other methods for downscaling short-duration precipitation events (used historical data from 2014 to 2017 as the training set to estimate high-resolution hourly events in 2018). 
    more » « less
  2. Abstract

    Conventional low‐resolution (LR) climate models, including the Energy Exascale Earth System Model (E3SMv1), have well‐known biases in simulating the frequency, intensity, and timing of precipitation. Approaches to next‐generation E3SM, whether the high‐resolution (HR) or multiscale modeling framework (MMF) configuration, improve the simulation of the intensity and frequency of precipitation, but regional and seasonal deficiencies still exist. Here we apply a methodology to assess the contribution of tropical cyclones (TCs), extratropical cyclones (ETCs), and mesoscale convective systems (MCSs) to simulated precipitation in E3SMv1‐HR and E3SMv1‐MMF relative to E3SMv1‐LR. Across the United States, E3SMv1‐MMF provides the best simulation in terms of precipitation accumulation, frequency and intensity from MCSs and TCs compared to E3SMv1‐LR and E3SMv1‐HR. All E3SMv1 configurations overestimate precipitation amounts from and the frequency of ETCs over CONUS, with conventional E3SMv1‐LR providing the best simulation compared to observations despite limitations in precipitation intensity within these events.

     
    more » « less
  3. Abstract

    Global climate models (GCMs) and Earth system models (ESMs) exhibit biases, with resolutions too coarse to capture local variability for fine-scale, reliable drought and climate impact assessment. However, conventional bias correction approaches may cause implausible climate change signals due to unrealistic representations of spatial and intervariable dependences. While purely data-driven deep learning has achieved significant progress in improving climate and earth system simulations and predictions, they cannot reliably learn the circumstances (e.g., extremes) that are largely unseen in historical climate but likely becoming more frequent in the future climate (i.e., climate non-stationarity). This study shows an integrated trend-preserving deep learning approach that can address the spatial and intervariable dependences and climate non-stationarity issues for downscaling and bias correcting GCMs/ESMs. Here we combine the super-resolution deep residual network (SRDRN) with the trend-preserving quantile delta mapping (QDM) to downscale and bias correct six primary climate variables at once (including daily precipitation, maximum temperature, minimum temperature, relative humidity, solar radiation, and wind speed) from five state-of-the-art GCMs/ESMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that the SRDRN-QDM approach greatly reduced GCMs/ESMs biases in spatial and intervariable dependences while significantly better-reducing biases in extremes compared to deep learning. The estimated drought based on the six bias-corrected and downscaled variables captured the observed drought intensity and frequency, which outperformed state-of-the-art multivariate bias correction approaches, demonstrating its capability for correcting GCMs/ESMs biases in spatial and multivariable dependences and extremes.

     
    more » « less
  4. Abstract Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970–1999) and projected (2030–2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution. 
    more » « less
  5. Abstract

    Future changes in climate variable exhibit prominent impact on flood magnitudes, crop yields, and freshwater withdrawal. Researchers typically ignore the large degree of uncertainty translated from climate projections to the estimated climate change magnitudes while applying pre‐processing approaches on climate change projections. General Circulation Models (GCM) exhibit substantial uncertainty in projecting future changes in the seasonal temperature, which is evaluated by estimating the shift in either the mean or variance. Bias between the observed changes (1950–1999) and GCM simulated changes vary across models, climate regions, seasons, and under emission scenarios. The simplest approach to reduce model structural uncertainty, equal weighting of GCMs, does not consider superiority of one or multiple GCMs compared to the rest. The current study adopts a performance‐based model combination approach that has shown efficiency in streamflow and weather forecasting, and GCM precipitation simulation. The optimal model combination approach has been modified to combine multi‐model climate change information, while yielding the spatial correlation in climate change information within a geographic region. The optimal model combination approach, along with a simple bias‐correction, is applied on 10 GCMs over nine climate regions across the coterminous United States (CONUS). We found that the optimal combination exhibits lower RMSE values as compared to the equal combination. Correlations between the model combined projections under optimal combination and the observed changes are strong and positive (>0.5). Future (2000–49) model combined projections exhibit an increase in the mean seasonal temperature by 2°C for winter and by 1°C for summer over almost all climate regions.

     
    more » « less