skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Fault-Tolerant Low-Diameter Clusters in Graphs
Cliques and their generalizations are frequently used to model “tightly knit” clusters in graphs and identifying such clusters is a popular technique used in graph-based data mining. One such model is the s-club, which is a vertex subset that induces a subgraph of diameter at most s. This model has found use in a variety of fields because low-diameter clusters have practical significance in many applications. As this property is not hereditary on vertex-induced subgraphs, the diameter of a subgraph could increase upon the removal of some vertices and the subgraph could even become disconnected. For example, star graphs have diameter two but can be disconnected by removing the central vertex. The pursuit of a fault-tolerant extension of the s-club model has spawned two variants that we study in this article: robust s-clubs and hereditary s-clubs. We analyze the complexity of the verification and optimization problems associated with these variants. Then, we propose cut-like integer programming formulations for both variants whenever possible and investigate the separation complexity of the cut-like constraints. We demonstrate through our extensive computational experiments that the algorithmic ideas we introduce enable us to solve the problems to optimality on benchmark instances with several thousand vertices. This work lays the foundations for effective mathematical programming approaches for finding fault-tolerant s-clubs in large-scale networks. History: Accepted by David Alderson, Area Editor for Network Optimization: Algorithms & Applications. Funding: The computing for this project was performed at the High Performance Computing Center at Oklahoma State University supported in part through the National Science Foundation [Grant OAC-1531128]. This material is based upon work supported by the National Science Foundation under [Grants 1662757 and 1942065]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1231 .  more » « less
Award ID(s):
1942065
PAR ID:
10404895
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
INFORMS Journal on Computing
Volume:
34
Issue:
6
ISSN:
1091-9856
Page Range / eLocation ID:
3181 to 3199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The analysis of social and biological networks often involves modeling clusters of interest ascliquesor their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider across‐graph‐clubmodel, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce. 
    more » « less
  2. null (Ed.)
    The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter. 
    more » « less
  3. An efficient implicit representation of an n-vertex graph G in a family F of graphs assigns to each vertex of G a binary code of length O(log n) so that the adjacency between every pair of vertices can be determined only as a function of their codes. This function can depend on the family but not on the individual graph. Every family of graphs admitting such a representation contains at most 2^O(n log(n)) graphs on n vertices, and thus has at most factorial speed of growth. The Implicit Graph Conjecture states that, conversely, every hereditary graph family with at most factorial speed of growth admits an efficient implicit representation. We refute this conjecture by establishing the existence of hereditary graph families with factorial speed of growth that require codes of length n^Ω(1). 
    more » « less
  4. ABSTRACT A subgraph of a graph with maximum degree is ‐overfullif . Clearly, if contains a ‐overfull subgraph, then its chromatic index is . However, the converse is not true, as demonstrated by the Petersen graph. Nevertheless, three families of graphs are conjectured to satisfy the converse statement: (1) graphs with (the Overfull Conjecture of Chetwynd and Hilton), (2) planar graphs (Seymour's Exact Conjecture), and (3) graphs whose subgraph induced on the set of maximum degree vertices is the union of vertex‐disjoint cycles (the Core Conjecture of Hilton and Zhao). Over the past decades, these conjectures have been central to the study of edge coloring in simple graphs. Progress had been slow until recently, when the Core Conjecture was confirmed by the authors in 2024. This breakthrough was achieved by extending Vizing's classical fan technique to two larger families of trees: the pseudo‐multifan and the lollipop. This paper investigates the properties of these two structures, forming part of the theoretical foundation used to prove the Core Conjecture. We anticipate that these developments will provide insights into verifying the Overfull Conjecture for graphs where the subgraph induced by maximum‐degree vertices has relatively small maximum degree. 
    more » « less
  5. The analysis of social and biological networks often involves model- ing clusters of interest as cliques or their graph-theoretic generaliza- tions. The 𝑘-club model, which relaxes the requirement of pairwise adjacency in a clique to length-bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules/complexes in biological networks. However, if the graphs are time-varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a cross-graph 𝑘-club model, a subset of nodes that forms a 𝑘-club in every graph in the collection. In this paper, we consider the canonical optimization problem of finding a cross-graph 𝑘-club of maximum cardinality. We introduce algorithmic ideas to solve this problem and evaluate their performance on some benchmark instances. Published in: Proceedings of The International Network Optimization Conference (INOC) 2022, Aachen, Germany 
    more » « less