skip to main content


Title: The two faces of Janus: Processes can be both exogenous forcings and endogenous feedbacks with wind as a case study
Abstract

Janus is the Roman god of transitions. In many environments, state transitions are an important part of our understanding of ecological change. These transitions are controlled by the interactions between exogenous forcing factors and stabilizing endogenous feedbacks. Forcing factors and feedbacks are typically considered to consist of different processes. We argue that during extreme events, a process that usually forms part of a stabilizing feedback can behave as a forcing factor. And thus, like Janus, a single process can have two faces. The case explored here pertains to state change in drylands where interactions between wind erosion and vegetation form an important feedback that encourages grass‐to‐shrub state transitions. Wind concentrates soil resources in shrub‐centered fertile islands, removes resources through loss of fines to favor deep‐rooted shrubs, and abrades grasses' photosynthetic tissue, thus further favoring the shrub state that, in turn, experiences greater aeolian transport. This feedback is well documented but the potential of wind to act also as a forcing has yet to be examined. Extreme wind events have the potential to act like other drivers of state change, such as drought and grazing, to directly reduce grass cover. This study examines the responses of a grass‐shrub community after two extreme wind events in 2019 caused severe deflation. We measured grass cover and root exposure due to deflation, in addition to shrub height, grass patch size, and grass greenness along 50‐m transects across a wide range of grass cover. Root exposure was concentrated in the direction of erosive winds during the storms and sites with low grass cover were associated with increased root exposure and reduced greenness. We argue that differences between extreme, rare wind events and frequent, small wind events are significant enough to be differences in kind rather than differences in degree allowing extreme winds to behave as endogenous forcings and common winds to participate in an endogenous stabilizing feedback. Several types of state change in other ecological systems in are contextualized within this framework.

 
more » « less
Award ID(s):
2025166 1832194
NSF-PAR ID:
10405032
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intensified anthropogenic activities have drastically altered many ecosystems, motivating the use of restoration to regain key ecosystem functions and services and to stem biodiversity losses. Restoration is particularly difficult when human activities have pushed an area into a new state with self‐reinforcing feedbacks. This study investigated a long‐term restoration project in a dryland ecosystem of the Tengger Desert in northwestern China, initiated in 1956. We analyzed shrub and grass cover for 49 yr after the installation of restoration infrastructure that altered external conditions (i.e., using packed straw to reduce wind erosion) and system state (by planting shrubs). After 37–40 yr, the re‐vegetation project was successful in restoring the system to a state similar to native vegetation, with high grass cover (30–50%), low shrub cover (8–10%), and a thick biological soil crust (biocrust). However, the shift to high grass cover did not begin until year 37, before which shrub cover was high (15–20%) and grasses were subdominant (usually <10%). The shift from shrub to grass dominance was abrupt, registering significant nonlinear changes over time and relative to a key driver of vegetation dynamics, estimated biocrust thickness. Biocrust thickness increased gradually over time, which reduced rainfall infiltration into deep soil and thus increased soil moisture available for the shallow‐rooted grasses. The shift from the bare soil state to the steppe state exhibited a long time lag, suggesting that it can take decades to determine whether dryland restoration efforts succeed. The results indicate that persistence might be critical to forcing desired state transitions and that dryland restoration can proceed as a series of time lags, punctuated by abrupt changes in ecosystem state.

     
    more » « less
  2. Abstract

    Many grass‐dominated ecosystems in dryland regions have experienced increasing woody plant density and abundance during the past century. In many cases, this process has led to land degradation and declines in ecosystem functions. An example is the Chihuahuan Desert in the southwestern United States, which experienced different stages of shrub encroachment in the past 150 years. Among a wide variety of mechanisms to explain the grass–shrub transitions in this dryland system, soil erosion (both wind and water) and fire are particularly well studied. Here, we synthesize recent developments on the drivers and feedback in the process of shrub encroachment in the Chihuahuan Desert through the intercomparison of two Long Term Ecological Research (LTER) sites, namely Jornada and Sevilleta. Experimental and modeling studies support a conceptual framework, which underscores the important roles of erosion and fire in woody plant encroachment. Collectively, research at the Jornada LTER provided complementary, quantitative support to the well‐known fertile‐islands framework. Studies at the Sevilleta LTER expanded the framework, adding fire as a major disturbance to woody plants. Conceptual models derived from the synthesis represent the general understanding of shrub encroachment that emerged from research at these two sites, and can guide management interventions aimed at reducing or mitigating undesirable ecosystem state change in many other drylands worldwide.

     
    more » « less
  3. Abstract

    Transitions from grass to woody plant dominance, widely reported in arid systems, are typically attributed to changes in disturbance regimes in combination with abiotic feedbacks, whereas biotic mechanisms such as competition and facilitation are often overlooked. Yet, research in semi‐arid and subhumid savannas indicates that biotic interactions are important drivers in systems at risk for state transition. We sought to bridge this divide by experimentally manipulating grass‐on‐shrub and shrub‐on‐shrub interactions in early and late stages of grassland–shrubland state transition, respectively, and to assess the extent to which these interactions might influence arid land state transition dynamics.

    TargetProsopis glandulosashrubs had surrounding grasses or conspecific neighbours left intact or killed with foliar herbicide, and metrics of plant performance were monitored over multiple years for shrubs with and without grass or shrub neighbours.

    Productivity of small shrubs was enhanced by grass removal in years with above‐average precipitation, a result not evident in larger shrubs or during dry years. Proxy evidence based on nearest neighbour metrics suggested shrub–shrub competition was at play, but our experimental manipulations revealed no such influence.

    Competition from grasses appears to attenuate the rate at which shrubs achieve the size necessary to modify the physical environment in self‐reinforcing ways, but only during the early stages of shrub encroachment. Our results further suggest that at late stages of grassland‐to‐shrubland state transitions, shrub–shrub competition will not slow the rate of shrub expansion, and suggest that maximum shrub cover is regulated by something other than density‐dependent mechanisms. We conclude that grass effects on shrubs should be included in assessments of desert grassland state transition probabilities and rates, and that desertification models in arid ecosystems that traditionally focus on disturbance and abiotic feedbacks should be broadened to incorporate spatial and temporal variations in competitive effects.

    Aplain language summaryis available for this article.

     
    more » « less
  4. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  5. The encroachment of woody plants into grasslands is a global phenomenon with implications for biodiversity and ecosystem function. Understanding and predicting the pace of expansion and the underlying processes that control it are key challenges in the study and management of woody encroachment. Theory from spatial population biology predicts that the occurrence and speed of population expansion should depend sensitively on the nature of conspecific density dependence. If fitness is maximized at the low-density encroachment edge then shrub expansion should be "pulled" forward. However, encroaching shrubs have been shown to exhibit positive feedbacks, whereby shrub establishment modifies the environment in ways that facilitate further shrub recruitment and survival. In this case there may be a fitness cost to shrubs at low density causing expansion to be "pushed" from behind the leading edge. We studied the spatial dynamics of creosotebush (Larrea tridentata), which has a history of encroachment into Chihuahuan Desert grasslands over the past century. We used demographic data from observational censuses and seedling transplant experiments to test the strength and direction of density dependence in shrub fitness along a gradient of shrub density at the grass-shrub ecotone. We also used seed-drop experiments and wind data to construct a mechanistic seed dispersal kernel, then connected demography and dispersal data within a spatial integral projection model (SIPM) to predict the dynamics of shrub expansion. The SIPM predicted that, contrary to expectations based on potential for positive feedbacks, the shrub encroachment wave is "pulled" by maximum fitness at the low-density front. However, the predicted pace of expansion was strikingly slow (ca. 8 cm/yr), and this prediction was supported by independent re-surveys of the ecotone showing little to no change in spatial extent of shrub cover over 12 years. Encroachment speed was acutely sensitive to seedling recruitment, suggesting that this population may be primed for pulses of expansion under conditions that are favorable for recruitment. Our integration of observations, experiments, and modeling reveals not only that this ecotone is effectively stalled under current conditions, but also why that is so and how that may change as the environment changes. 
    more » « less