Rapid identification of antibiotic-resistant bacteria will play a key role in solving the global antibiotic crisis by providing a route to targeted antibiotic administration. However, current bacterial infection diagnoses take up to 3 days which can lead to antibiotic treatment that is less effective. Here we report a microfluidic system with a ladder shaped design allowing us to generate a twofold serial dilution of antibiotics comparable to current national and international standards. Our consolidated design, with minimal handling steps cuts down the testing time for antibiotic susceptibility from 16–20 h to 4–5 h. Our feasibility testing results are consistent with the commercial antibiotic susceptibility testing (AST) results, showing a 91.75% rate of agreement for Gram-negative and Gram-positive bacterial isolated from canine urinary tract infections (UTI) and may be used without prior isolation or enrichment. This platform provides an adaptable and efficient diagnostic tool for antibiotic susceptibility testing.
more » « less- PAR ID:
- 10405047
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Engineering
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2731-3395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Background. Rapid blood culture diagnostics are of unclear benefit for patients with gram-negative bacilli (GNB) bloodstream infections (BSIs). We conducted a multicenter, randomized, controlled trial comparing outcomes of patients with GNB BSIs who had blood culture testing with standard-of-care (SOC) culture and antimicrobial susceptibility testing (AST) vs rapid organism identification (ID) and phenotypic AST using the Accelerate Pheno System (RAPID). Methods. Patients with positive blood cultures with Gram stains showing GNB were randomized to SOC testing with antimicrobial stewardship (AS) review or RAPID with AS. The primary outcome was time to first antibiotic modification within 72 hours of randomization. Results. Of 500 randomized patients, 448 were included (226 SOC, 222 RAPID). Mean (standard deviation) time to results was faster for RAPID than SOC for organism ID (2.7 [1.2] vs 11.7 [10.5] hours; P < .001) and AST (13.5 [56] vs 44.9 [12.1] hours; P < .001). Median (interquartile range [IQR]) time to first antibiotic modification was faster in the RAPID arm vs the SOC arm for overall antibiotics (8.6 [2.6–27.6] vs 14.9 [3.3–41.1] hours; P = .02) and gram-negative antibiotics (17.3 [4.9–72] vs 42.1 [10.1–72] hours; P < .001). Median (IQR) time to antibiotic escalation was faster in the RAPID arm vs the SOC arm for antimicrobial-resistant BSIs (18.4 [5.8–72] vs 61.7 [30.4–72] hours; P = .01). There were no differences between the arms in patient outcomes. Conclusions. Rapid organism ID and phenotypic AST led to faster changes in antibiotic therapy for gram-negative BSIs.more » « less
-
Abstract Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as
; however, these polymers are not effective against Gram‐positive bacteria, such asEscherichia coli . With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asStaphylococcus aureus , however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical IndustryS. aureus -
ABSTRACT Northern Greece was struck by an intense second COVID-19 (coronavirus disease 2019) epidemic wave during the fall of 2020. Because of the coinciding silent epidemic of multidrug-resistant organisms, the handling of COVID-19 patients became even more challenging. In the present study, the microbiological characteristics of bacteremias in confirmed cases of hospitalized COVID-19 patients were determined. Data from 1165 patients hospitalized between September and December 2020 were reviewed regarding the frequency of bloodstream infections, the epidemiology and the antibiotic susceptibility profiles of the causative bacteria. The hospital's antibiotic susceptibility data for all major nosocomial pathogens isolated from bacteremias of COVID-19 patients between September and December 2020 versus those between September and December 2019 were also compared. Overall, 122 patients developed bacteremia (10.47%). The average of time interval between hospitalization date and development of bacteremia was 13.98 days. Admission to ICU occurred in 98 out of 122 patients with an average stay time of 15.85 days and 90.81% in-hospital mortality. In total, 166 pathogens were recovered including 114 Gram-negative bacteria and 52 Gram-positive cocci. Acinetobacter baumannii was the most frequent (n = 51) followed by Klebsiella pneumoniae (n = 45) and Enterococcus faecium (n = 31). Bacteremias in hospitalized COVID-19 patients were related with prolonged time of hospitalization and higher in-hospital mortality, and the isolated microorganisms represented the bacterial species that were present in our hospital before the COVID-19 pandemic. Worryingly, the antibiotic resistance rates were increased compared with the pre-pandemic era for all major opportunistic bacterial pathogens. The pandemic highlighted the need for continuous surveillance of patients with prolonged hospitalization.
-
This study introduces a groundbreaking point-of-care (POC) system designed for antibiotic susceptibility testing (AST). At the heart of this innovation is the organic electrochemical transistor, a device that significantly amplifies the electrical signals arising from the redox activities and extracellular electron transfers of pathogens when exposed to antibiotics. This process involves electroactive reactions that either dope or de-dope the transistor's channel, leading to substantial changes in the current flow between the source and drain terminals. Furthermore, our system features an innovative integration with a paper substrate. This design decision significantly simplifies the handling of liquid bacterial cultures, making the process more straightforward and efficient. We have rigorously tested our sensing system using three well-known pathogens: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, exposing them to leading antibiotics to validate the system's effectiveness.more » « less