skip to main content


Title: Ladder-shaped microfluidic system for rapid antibiotic susceptibility testing
Abstract

Rapid identification of antibiotic-resistant bacteria will play a key role in solving the global antibiotic crisis by providing a route to targeted antibiotic administration. However, current bacterial infection diagnoses take up to 3 days which can lead to antibiotic treatment that is less effective. Here we report a microfluidic system with a ladder shaped design allowing us to generate a twofold serial dilution of antibiotics comparable to current national and international standards. Our consolidated design, with minimal handling steps cuts down the testing time for antibiotic susceptibility from 16–20 h to 4–5 h. Our feasibility testing results are consistent with the commercial antibiotic susceptibility testing (AST) results, showing a 91.75% rate of agreement for Gram-negative and Gram-positive bacterial isolated from canine urinary tract infections (UTI) and may be used without prior isolation or enrichment. This platform provides an adaptable and efficient diagnostic tool for antibiotic susceptibility testing.

 
more » « less
NSF-PAR ID:
10405047
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Engineering
Volume:
2
Issue:
1
ISSN:
2731-3395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Northern Greece was struck by an intense second COVID-19 (coronavirus disease 2019) epidemic wave during the fall of 2020. Because of the coinciding silent epidemic of multidrug-resistant organisms, the handling of COVID-19 patients became even more challenging. In the present study, the microbiological characteristics of bacteremias in confirmed cases of hospitalized COVID-19 patients were determined. Data from 1165 patients hospitalized between September and December 2020 were reviewed regarding the frequency of bloodstream infections, the epidemiology and the antibiotic susceptibility profiles of the causative bacteria. The hospital's antibiotic susceptibility data for all major nosocomial pathogens isolated from bacteremias of COVID-19 patients between September and December 2020 versus those between September and December 2019 were also compared. Overall, 122 patients developed bacteremia (10.47%). The average of time interval between hospitalization date and development of bacteremia was 13.98 days. Admission to ICU occurred in 98 out of 122 patients with an average stay time of 15.85 days and 90.81% in-hospital mortality. In total, 166 pathogens were recovered including 114 Gram-negative bacteria and 52 Gram-positive cocci. Acinetobacter baumannii was the most frequent (n = 51) followed by Klebsiella pneumoniae (n = 45) and Enterococcus faecium (n = 31). Bacteremias in hospitalized COVID-19 patients were related with prolonged time of hospitalization and higher in-hospital mortality, and the isolated microorganisms represented the bacterial species that were present in our hospital before the COVID-19 pandemic. Worryingly, the antibiotic resistance rates were increased compared with the pre-pandemic era for all major opportunistic bacterial pathogens. The pandemic highlighted the need for continuous surveillance of patients with prolonged hospitalization.

     
    more » « less
  2. Abstract

    Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such asEscherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such asStaphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asS. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry

     
    more » « less
  3. Abstract Background

    Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations.

    Results

    The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment.Vibrio fischeriwas most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association.

    Conclusions

    The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This “insurance policy” provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses.

     
    more » « less
  4. Background. Rapid blood culture diagnostics are of unclear benefit for patients with gram-negative bacilli (GNB) bloodstream infections (BSIs). We conducted a multicenter, randomized, controlled trial comparing outcomes of patients with GNB BSIs who had blood culture testing with standard-of-care (SOC) culture and antimicrobial susceptibility testing (AST) vs rapid organism identification (ID) and phenotypic AST using the Accelerate Pheno System (RAPID). Methods. Patients with positive blood cultures with Gram stains showing GNB were randomized to SOC testing with antimicrobial stewardship (AS) review or RAPID with AS. The primary outcome was time to first antibiotic modification within 72 hours of randomization. Results. Of 500 randomized patients, 448 were included (226 SOC, 222 RAPID). Mean (standard deviation) time to results was faster for RAPID than SOC for organism ID (2.7 [1.2] vs 11.7 [10.5] hours; P < .001) and AST (13.5 [56] vs 44.9 [12.1] hours; P < .001). Median (interquartile range [IQR]) time to first antibiotic modification was faster in the RAPID arm vs the SOC arm for overall antibiotics (8.6 [2.6–27.6] vs 14.9 [3.3–41.1] hours; P = .02) and gram-negative antibiotics (17.3 [4.9–72] vs 42.1 [10.1–72] hours; P < .001). Median (IQR) time to antibiotic escalation was faster in the RAPID arm vs the SOC arm for antimicrobial-resistant BSIs (18.4 [5.8–72] vs 61.7 [30.4–72] hours; P = .01). There were no differences between the arms in patient outcomes. Conclusions. Rapid organism ID and phenotypic AST led to faster changes in antibiotic therapy for gram-negative BSIs. 
    more » « less
  5. Abstract

    Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings. We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG), k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an extensive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous, with balanced accuracy varying from 0.40 to 0.92. Although some algorithms—ResFinder, KARGA and AMRPlusPlus—exhibit overall better balanced accuracy than others, the high per-AMR-class variance and related findings suggest that: (1) all algorithms might be subject to sampling bias both in data repositories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain uncharacterized AMR genes that the algorithms—mostly trained on known AMR genes—fail to generalize upon. These results lead us to formulate practical advice for software configuration and application, and give suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.

     
    more » « less