Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.
more »
« less
Experimental simulation of loop quantum gravity on a photonic chip
Abstract The unification of general relativity and quantum theory is one of the fascinating problems of modern physics. One leading solution is Loop Quantum Gravity (LQG). Simulating LQG may be important for providing predictions which can then be tested experimentally. However, such complex quantum simulations cannot run efficiently on classical computers, and quantum computers or simulators are needed. Here, we experimentally demonstrate quantum simulations of spinfoam amplitudes of LQG on an integrated photonics quantum processor. We simulate a basic transition of LQG and show that the derived spinfoam vertex amplitude falls within 4% error with respect to the theoretical prediction, despite experimental imperfections. We also discuss how to generalize the simulation for more complex transitions, in realistic experimental conditions, which will eventually lead to a quantum advantage demonstration as well as expand the toolbox to investigate LQG.
more »
« less
- PAR ID:
- 10405199
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Quantum Information
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2056-6387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The fermion propagator is derived in detail from the model of fermion coupled to loop quantum gravity (LQG). As an ingredient of the propagator, the vacuum state is defined as the ground state of some effective fermion Hamiltonian under the background geometry given by a coherent state resembling the classical Minkowski spacetime. Moreover, as a critical feature of LQG, the superposition over graphs is employed to define the vacuum state. It turns out that the graph superposition leads to the propagator being the average of the propagators of the lattice field theory over various graphs so that all fermion doubler modes are suppressed in the propagator. This resolves the doubling problem in LQG. Our result suggests that the superposition nature of quantum geometry should, on the one hand, resolve the tension between fermion and the fundamental discreteness and, on the other hand, relate to the continuum limit of quantum gravity.more » « less
-
Abstract Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits, along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. In this work, we develop a new autonomous quantum error correction scheme that actively corrects single-photon loss and passively suppresses low-frequency dephasing, and we demonstrate an important experimental step towards its full implementation with transmons. Compared to uncorrected encoding, improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient autonomous quantum error correction to enhance the reliability of a transmon-based quantum information processor.more » « less
-
Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations.more » « less
-
Abstract Quantum simulation of chemical systems is one of the most promising near-term applications of quantum computers. The variational quantum eigensolver, a leading algorithm for molecular simulations on quantum hardware, has a serious limitation in that it typically relies on a pre-selected wavefunction ansatz that results in approximate wavefunctions and energies. Here we present an arbitrarily accurate variational algorithm that, instead of fixing an ansatz upfront, grows it systematically one operator at a time in a way dictated by the molecule being simulated. This generates an ansatz with a small number of parameters, leading to shallow-depth circuits. We present numerical simulations, including for a prototypical strongly correlated molecule, which show that our algorithm performs much better than a unitary coupled cluster approach, in terms of both circuit depth and chemical accuracy. Our results highlight the potential of our adaptive algorithm for exact simulations with present-day and near-term quantum hardware.more » « less
An official website of the United States government
