- Award ID(s):
- 1921364
- PAR ID:
- 10330957
- Date Published:
- Journal Name:
- 2021 IEEE Sensors
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A glucose biofuel cell is presented using laser induced 3D graphene (LIG) substrate integrated with catalytic active nanomaterials for harnessing the biochemical energy of glucose. The LIG anode comprised glucose dehydrogenase immobilized on reduced graphene oxide and multiwalled carbon nanotubes (RGO/MWCNTs) nanocomposite for glucose oxidation. The LIG cathode is modified with RGO/MWCNTs and silver oxide (Ag 2 O) nanocomposites for the reduction of oxygen. The assembled biofuel cell exhibited a linear peak power response up to 18 mM glucose with sensitivity of 0.63 μW mM -1 cm −2 and exhibited good linearity (r 2 = 0.99). The glucose biofuel cell showed an open-circuit voltage of 0.365 V, a maximum power density of 11.3 μW cm −2 at a cell voltage of 0.25 V, and a short-circuit current density of 45.18 μA cm −2 when operating in 18 mM glucose. Cyclic voltammetry revealed the bioanode exhibited similar linearity for the detection of glucose. These results demonstrate that LIG based bioelectrodes offer great promise for diverse applications in the development of hybrid biofuel cell and biosensor technology.more » « less
-
Herein a system capable of simultaneously sensing glucose and harnessing sufficient energy to power a digital device is presented. This system is powered by an enzymatic glucose biofuel cell consisting of pyroloquinoline quinone glucose dehydrogenase‐modified bioanode and bilirubin oxidase‐modified biocathode. The electrical parameters from a single biofuel cell were amplified to 1.4 V using a charge pump circuit consisting of a capacitive element that senses glucose. Furthermore, a steady output DC supply of 3.2 V was obtained by interfacing a step‐up DC convertor circuit to the charge pump circuit. Such a system simultaneously senses glucose and harnesses energy in the presence of various glucose concentrations. The self‐powered glucose biosensor exhibited an improved sensitivity of 86.42 Hz/cm2mM with a linear range extending to 20 mM when operating a digital device simultaneously. This is a 3.7‐fold increase in sensor sensitivity when compared with previous self‐powered glucose biosensors. This novel self‐powered glucose biosensing system shows a promising future for powering implantable devices and assessing patient health.
-
Abstract A hybrid biofuel cell (HBFC) is explored as a low-cost alternative to abiotic and enzymatic biofuel cells. Here the HBFC provides an enzymeless approach for the fabrication of the anodic electrode while employing an enzymatic approach for the fabrication of the cathodic electrode to develop energy harvesting platform to power bioelectronic devices. The anode employed 250 μm braided gold wire modified with colloidal platinum (Au-co-Pt) and bilirubin oxidase (BODx) modified gold coated Buckypaper (BP-Au-BODx) cathode. The functionalization of the gold coated multi-walled carbon nanotube (MWCNT) structures of the BP electrodes is achieved by 3-mercaptopropionic acid surface modification to possess negatively charged carboxylic groups and subsequently followed by EDC/Sulfo-NHS (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysulfosuccinimide) crosslinking with BODx. The integration of the BODx and gold coated MWCNTs is evaluated for bioelectrocatalytic activity. The Au-co-Pt and BP-Au-BODx exhibited excellent electrocatalytic activity towards glucose oxidation with a linear dynamic range up to 20 mM glucose and molecular oxygen reduction, respectively. The HBFC demonstrated excellent performance with the largest open circuit voltages of 0.735 V and power density of 46.31 μW/cm2in 3 mM glucose. In addition, the HBFC operating on 3 mM glucose exhibited excellent uninterrupted operational stability while continuously powering a small electronic device. These results provide great opportunities for implementing this simple but efficient HBFC to harvest the biochemical energy of target fuel(s) in diverse medical and environmental applications.
-
Abstract In this work, a low power microcontroller-based near field communication (NFC) interfaced with a flexible abiotic glucose hybrid fuel cell is designed to function as a battery-less glucose sensor. The abiotic glucose fuel cell is fabricated by depositing colloidal platinum (co–Pt) on the anodic region and silver oxide nanoparticles-multiwalled carbon nanotubes (Ag 2 O-MWCNTs) composite on the cathodic region. The electrochemical behavior is characterized using cyclic voltammetry and chronoamperometry. This glucose hybrid fuel cell generated an open circuit voltage of 0.46 V, short circuit current density of 0.444 mA/cm 2 , and maximum power density of 0.062 mW/cm 2 at 0.26 V in the presence of 7 mM physiologic glucose. Upon device integration of the abiotic glucose hybrid fuel cell with the NFC module, the data from the glucose monitoring system is successfully transmitted to an android application for visualization at the user interface. The cell voltage correlated (r 2 = 0.989) with glucose concentration (up to 19 mM) with a sensitivity of 13.9 mV/mM•cm 2 .more » « less
-
Abstract We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM–45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries.