skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preparing Rural Middle School Teachers to Implement an Engineering Design Elective Course: A Just-In-Time Professional Development Approach
This paper presents the experiences of two STEM outreach specialists as they prepared two rural middle school teachers with limited STEM backgrounds to implement a 3-part grade level specific engineering design elective course at their schools. This work is part of an Innovative Experiences for Teachers and Students (ITEST) project designed to provide community-based engineering design experiences for underrepresented middle school students (grades 6-8) from rural N.C. The course engages students in authentic STEM design experiences situated in the advanced manufacturing industry in an effort to improve their STEM content knowledge and career awareness and their self-efficacy, identity and interest in STEM careers, particularly engineering. The outreach specialists experienced a number of challenges as they worked with the teachers, many of which were exacerbated by the on-going pandemic. In response to social distancing requirements imposed by COVID-19, the specialists adopted a just-in-time (JIT) approach to teacher professional development (PD) where the content, pace, and scheduling of PD sessions were based on each individual teacher’s prior content knowledge, comfort level and work schedule. This paper focuses on the process of skill preparation of the middle school teachers in the execution of the 6th grade course in the 2020-21 school year. Additional aspects to be discussed include a sampling of best practices, an overview of lessons learned and implementation strategies during the second iteration of the 6th grade course and the first implementation of the 7th grade course during the 2021-22 school year.  more » « less
Award ID(s):
1949454
PAR ID:
10405307
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Minneapolis, MN
Sponsoring Org:
National Science Foundation
More Like this
  1. In early 2020, a research collaboration between a college of engineering, a research institute, a pre-college STEM program, a rural school district, and the local advanced manufacturing industry began. The goal of this Innovative Technology Experiences for Students and Teachers (ITEST) project was to create community-based engineering design experiences for underserved middle school students (grades 6-8) from rural NC aimed to improve their cognitive (STEM content knowledge and career awareness) and non-cognitive (interest, self-efficacy, and STEM identity) outcomes, and ultimately lead to their increased participation in STEM fields, particularly engineering. The project leverages strategic partnerships to create a 3-part, grade-level specific Engineering Design and Exploration course that engages middle school students in authentic engineering design experiences that allow them to research, design, and problem-solve in a simulated advanced manufacturing environment. Shortly after receiving university approval to begin the research process, progress was halted due to an unprecedented global health crisis. The school district was closed for several weeks as administrators and teachers prepared to transition to remote learning. In addition, the district experienced unexpected teacher and administrator turnover. In the wake of such uncertainty, the partners have pivoted their research design to work more closely with industry partners while still maintaining an active relationship with the school district as they rebuild. This paper will describe the challenges faced, strategies employed, and lessons learned during the course development and implementation process. 
    more » « less
  2. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  3. Research exploring the pedagogical content knowledge (PCK) of engineering teachers remains sparse and more studies are needed to highlight systematic ways in which teachers scaffold teaching of engineering in K-12 schools. As part of an NSF funded DRK-12 project conducting research on the implementation of the STEM-ID curricula, we investigated the PCK of six middle school engineering teachers implementing a semester-long curricula in their 6th, 7th, and 8th grade classrooms. Using the theoretical lens of the refined consensus model of PCK in science teaching, we present preliminary findings of ways in which teachers converted their personal PCK (pPCK) into enacted PCK (ePCK) in engineering. We provide implications for research and its impact on scaffolding effective engineering PCK for K-12 teaching. 
    more » « less
  4. In rural, geographically dispersed school districts, access to high-quality face-to-face professional development (PD) is challenging. Our study developed and compared the effectiveness of an online PD for middle-school science teachers working in remote, rural areas of Kansas with an evidence-based traditional face-to-face PD. Fifteen rural middle-school science teacher participants were randomly selected to participate in the online or traditional PD, then taught the Toward High School Biology curriculum to their 504 middle-school students. Findings aligned with our hypothesis that online PD is as effective as traditional in improving student content knowledge. Teachers’ instructional practices in using Next Generation Science Standards improved, as did their use of student-centered instruction and making science relevant to the lives of their students. 
    more » « less
  5. null (Ed.)
    K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons. 
    more » « less