skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world
Abstract Previous studies suggest that greenhouse gas-induced warming can lead to increased fine particulate matter concentrations and degraded air quality. However, significant uncertainties remain regarding the sign and magnitude of the response to warming and the underlying mechanisms. Here, we show that thirteen models from the Coupled Model Intercomparison Project Phase 6 all project an increase in global average concentrations of fine particulate matter in response to rising carbon dioxide concentrations, but the range of increase across models is wide. The two main contributors to this increase are increased abundance of dust and secondary organic aerosols via intensified West African monsoon and enhanced emissions of biogenic volatile organic compounds, respectively. Much of the inter-model spread is related to different treatment of biogenic volatile organic compounds. Our results highlight the importance of natural aerosols in degrading air quality under current warming, while also emphasizing that improved understanding of biogenic volatile organic compounds emissions due to climate change is essential for numerically assessing future air quality.  more » « less
Award ID(s):
2153486
PAR ID:
10405342
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange. 
    more » « less
  2. Climate change will bring about changes in meteorological and ecological factors that are currently used in global-scale models to calculate biogenic emissions. By comparing long-term datasets of biogenic compounds to modeled emissions, this work seeks to improve understanding of these models and their driving factors. We compare speciated biogenic volatile organic compound (BVOC) measurements at the Virginia Forest Research Laboratory located in Fluvanna County, VA, USA, for the year 2020 with emissions estimated by the Model of Emissions of Gases and Aerosols from Nature version 3.2 (MEGANv3.2). The emissions were subjected to oxidation in a 0-D box model (F0AM v4.3) to generate time series of modeled concentrations. We find that default light-dependent fractions (LDFs) in the emissions model do not accurately represent observed temporal variability in regional observations. Some monoterpenes with a default light dependence are better represented using light-independent emissions throughout the year (LDFα-pinene=0, as opposed to 0.6), while others are best represented using a seasonally or temporally dependent light dependence. For example, limonene has the highest correlation between modeled and measured concentrations using an LDF =0 for January through April and roughly 0.74–0.97 in the summer months, in contrast to the default value of 0.4. The monoterpenes β-thujene, sabinene, and γ-terpinene similarly have an LDF that varies throughout the year, with light-dependent behavior in summer, while camphene and α-fenchene follow light-independent behavior throughout the year. Simulations of most compounds are consistently underpredicted in the winter months compared to observed concentrations. In contrast, day-to-day variability in the concentrations during summer months are relatively well captured using the coupled emissions–chemistry model constrained by regional concentrations of NOX and O3. 
    more » « less
  3. Air quality policies have made substantial gains by reducing pollutant emissions from the transportation sector. In March 2020, New York City’s activities were severely curtailed in response to the COVID-19 pandemic, resulting in 60–90% reductions in human activity. We continuously measured major volatile organic compounds (VOCs) during January–April 2020 and 2021 in Manhattan. Concentrations of many VOCs decreased significantly during the shutdown with variations in daily patterns reflective of human activity perturbations, resulting in a temporary ∼28% reduction in chemical reactivity. However, the limited effect of these dramatic measures was outweighed by larger increases in VOC-related reactivity during the anomalously warm spring 2021. This emphasizes the diminishing returns from transportation-focused policies alone and the risk of increased temperature-dependent emissions undermining policy-related gains in a warming climate. 
    more » « less
  4. null (Ed.)
    Abstract. In response to the coronavirus disease of 2019 (COVID-19),California issued statewide stay-at-home orders, bringing about abrupt anddramatic reductions in air pollutant emissions. This crisis offers us anunprecedented opportunity to evaluate the effectiveness of emissionreductions in terms of air quality. Here we use the Weather Research and Forecastingmodel with Chemistry (WRF-Chem) in combination with surface observations tostudy the impact of the COVID-19 lockdown measures on air quality insouthern California. Based on activity level statistics and satelliteobservations, we estimate the sectoral emission changes during the lockdown.Due to the reduced emissions, the population-weighted concentrations of fineparticulate matter (PM2.5) decrease by 15 % in southernCalifornia. The emission reductions contribute 68 % of the PM2.5concentration decrease before and after the lockdown, while meteorologyvariations contribute the remaining 32 %. Among all chemical compositions,the PM2.5 concentration decrease due to emission reductions isdominated by nitrate and primary components. For O3 concentrations, theemission reductions cause a decrease in rural areas but an increase in urbanareas; the increase can be offset by a 70 % emission reduction inanthropogenic volatile organic compounds (VOCs). These findings suggest thata strengthened control on primary PM2.5 emissions and a well-balancedcontrol on nitrogen oxides and VOC emissions are needed to effectively andsustainably alleviate PM2.5 and O3 pollution in southernCalifornia. 
    more » « less
  5. The oxidation of organic matter from fuel combustion or vegetation emissions into organic acids is a major source of dissolved organic carbon (DOC) in precipitation. Long‐term measurements of DOC in precipitation are rare, but the existing records mostly show decreases due to reduction in fuel combustion. Here, we show a recent, sudden increase in precipitation DOC concentration in a 27‐year record from the Hubbard Brook Experimental Forest (HBEF) in northern New Hampshire, USA Starting in 2010, where mean annual DOC concentration increased from about 80 to 130 μmol L−1in 2022. No other solutes in precipitation showed a similar sudden change. The weekly DOC concentration was not clearly related to the 72‐hr air mass trajectory characteristics or changes in trajectories. We assessed the feasibility of multiple possible causes for the DOC increase, including an increase in biogenic volatile organic compound (BVOC) emissions from the forest or from forest fires, changes in oxidation processes in the troposphere, and changes in gas‐phase solubility due to increasing pH in precipitation. Further study of sudden changes in BVOC emissions in the region, possible causes, and air quality effects are warranted. 
    more » « less