skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sunflower spines and beyond: Mechanisms and breadth of pollen that reduce gut pathogen infection in the common eastern bumble bee
Abstract Plants have unique chemical and physical traits that can reduce infections in animals ranging from primates to caterpillars. Sunflowers (Helianthus annuus; Asteraceae) are one striking example, with pollen that suppresses infections by the trypanosomatid gut pathogenCrithidia bombiin the common eastern bumble bee (Bombus impatiens). However, the mechanism underlying this effect has remained elusive, and we do not know whether pollens from other Asteraceae species have similar effects.We evaluated whether mechanisms mediating sunflower pollen's antipathogenic effects are physical (due to its spiny exine), chemical (due to metabolites) or both. We also evaluated the degree to which pollen from seven other Asteraceae species reducedC. bombiinfection relative to pollen from sunflower and two non‐Asteraceae species, and whether pollen spine length predicted pathogen suppression.We found that sunflower exines alone reduced infection as effectively as whole sunflower pollen, while sunflower pollen metabolites did not. Furthermore, bees fed pollen from four of seven other Asteraceae had 62%–92% lowerC. bombiinfections than those fed non‐Asteraceae pollen. Spine length, however, did not explain variation in bumble bee infection.Our study indicates that sunflower pollen's capacity to suppressC. bombiis driven by its spiny exine, and that this phenomenon extends to several other Asteraceae species. Our results indicate that sunflower pollen exines are as effective as whole pollen in reducing infection, suggesting that future studies should expand to assess the effects of other species with spiny pollen on pollinator–pathogen dynamics. Read the freePlain Language Summaryfor this article on the Journal blog.  more » « less
Award ID(s):
2128221 2010615
PAR ID:
10405403
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
37
Issue:
6
ISSN:
0269-8463
Page Range / eLocation ID:
p. 1757-1769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Pathogens and lack of floral resources interactively impair global pollinator health. However, epidemiological and nutritional studies aimed at understanding bee declines have historically focused on social species, with limited evaluations of solitary bees. Here, we asked whether Crithidia bombi , a trypanosomatid gut pathogen known to infect bumble bees, could infect the solitary bees Osmia lignaria (females) and Megachile rotundata (males), and whether nutritional stress influenced infection patterns and bee survival. We found that C. bombi was able to infect both solitary bee species, with 59% of O. lignaria and 29% of M. rotundata bees experiencing pathogen replication 5–11 days following inoculation. Moreover, access to pollen resulted in O. lignaria living longer, although it did not influence M. rotundata survival. Access to pollen did not affect infection probability or resulting pathogen load in either species. Similarly, inoculating with the pathogen did not drive survival patterns in either species during the 5–11-day laboratory assays. Our results demonstrate that solitary bees can be hosts of a known bumble bee pathogen, and that access to pollen is an important contributing factor for bee survival, thus expanding our understanding of factors contributing to solitary bee health. 
    more » « less
  2. Abstract Gut symbionts can augment resistance to pathogens by stimulating host-immune responses, competing for space and nutrients, or producing antimicrobial metabolites. Gut microbiota of social bees, which pollinate many crops and wildflowers, protect hosts against diverse infections and might counteract pathogen-related bee declines. Bumble bee gut microbiota, and specifically abundance of Lactobacillus ‘Firm-5’ bacteria, can enhance resistance to the trypanosomatid parasite Crithidia bombi . However, the mechanism underlying this effect remains unknown. We hypothesized that the Firm-5 bacterium Lactobacillus bombicola , which produces lactic acid, inhibits C. bombi via pH-mediated effects. Consistent with our hypothesis, L. bombicola spent medium inhibited C. bombi growth via reduction in pH that was both necessary and sufficient for inhibition. Inhibition of all parasite strains occurred within the pH range documented in honey bees, though sensitivity to acidity varied among strains. Spent medium was slightly more potent than HCl, d - and l -lactic acids for a given pH, suggesting that other metabolites also contribute to inhibition. Results implicate symbiont-mediated reduction in gut pH as a key determinant of trypanosomatid infection in bees. Future investigation into in vivo effects of gut microbiota on pH and infection intensity would test the relevance of these findings for bees threatened by trypanosomatids. 
    more » « less
  3. Abstract In insects and other invertebrates, prior pathogen exposures can improve immune responses and survival to subsequent infections through immune priming. Alternatively, stress and metabolic costs of multiple infections can impair host immunity and survival. The effects of high‐temperature extremes on host–pathogen interactions are not well understood despite the increasing occurrence of heat waves caused by climate change.The response of insects to heat waves and pathogens depends on recent evolutionary history with selective pressures. Domestication of insect pests has occurred in lab colonies of model species, reducing selective pressures for immune and heat stress responses. Lab strains are often used in immunological or heat stress experiments to represent wild field strains, but the efficacy of this approach is seldom evaluated.Using the tobacco hornworm (Manduca sexta), we tested the impact of a heat wave during initial pathogen exposure on survival of a secondary infection withBacillus thuringiensisbacteria. We used a domesticated lab population and a naturally occurring field population ofM. sextato evaluate the impacts of recent domestication on immune and thermal responses.A heat wave during initial infection significantly increased survival of the secondaryB. thuringiensisinfection in the field, but not the lab population ofM. sexta.In the field population, survival of the repeated infection was temperature dependent: exposure to an initial infection event reduced survival of the secondary infection at the control temperature regime, consistent with a stress effect. However, a heat wave during the initial infection event increased survival of the secondary infection, consistent with immune priming effects.The results of this study demonstrate that (a) insect response to thermal stress and pathogens can depend on recent domestication and (b) responses of hosts to repeat pathogen exposures can be temperature‐dependent, suggesting that cross‐talk between the heat stress and immune memory pathways may have important consequences for host–pathogen outcomes under heat wave events. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Bumble bees can benefit from fungi, though the mechanisms underlying these benefits remain unknown and could include nutrition, resource supplementation, or pathogen protection. We tested how adding living yeasts or their metabolic products toBombus impatiensdiets in a factorial experiment affects microcolony performance, including survival, reproduction, and pathogen presence. We additionally assessed effects of yeast treatments on diet (nectar and pollen) chemical composition using untargeted metabolomics. Yeasts impacted microcolony reproduction and survival, but effects depended on source colony. Colonies containing the putative pathogenAspergillusshowed reduced reproduction, but yeast treatments reducedAspergillusprevalence. Yeast treatments altered chemical composition of nectar and pollen, but most distinguishing compounds were unidentified. Our results suggest limited direct effects of yeasts via nutrition, resource supplementation, or modification of diets, instead suggesting that yeasts may benefit bees through interactions with the pathogens includingAspergillus. Overall, the effects of yeast supplementation are context-dependent, and more research is necessary to better understand the factors important in determining their impacts on bee hosts. 
    more » « less
  5. Abstract Most pesticide research has focussed on risk to managed honeybees, but other managed and wild bees are also exposed to pesticides. Critically, we know little about the magnitude and sources of risk to honeybees compared with other bees during crop pollination.To compare pesticide exposure and risk across wild and managed bees, we sampled the main bee groups present during bloom in 20 apple orchards, including managed honeybees (Apis mellifera), managed bumblebee workers (Bombus impatiens), wild mining bees (Andrenaspp. andAndrena [Melandrena]spp.), bumblebee foundress queens (Bombus impatiens) and eastern carpenter bees (Xylocopa virginica). We screened all bees for 92 pesticides and computed a Risk Quotient using available toxicity data (honeybee LD50s), adjusting for differences in toxicity known to scale with body mass. To gain insight into exposure origin, we compared residues in bees to those in focal orchard apple and dandelion flowers.Nearly all bee samples contained pesticides (95%), with the average contamination level ranging from 7.1 ± 2.8 parts per billion (ppb) inB. impatiensworkers to 388.4 ± 146.2 ppb inAndrena. Exposure profiles were similar for all bees exceptA. mellifera, whose unique exposure profile included high levels of the neonicotinoid insecticide thiamethoxam.All bee groups except wildB. impatiensqueens had at least one sample exceeding a US Environmental Protection Agency or European Food Safety Authority exposure level of concern.Apis melliferaexperienced significantly greater risk than other bee groups, with 63% and 81% of samples exceeding an acute or chronic exposure level of concern, respectively. Risk to honeybees was driven primarily by high thiamethoxam levels not found in focal orchard flowers and likely originating outside the orchard.Synthesis and applications: We find that pesticide exposure and risk differ between honeybees and other managed and wild bees during apple pollination. Furthermore, pesticide exposure is a landscape‐scale phenomenon and therefore measures to reduce exposure must consider the surroundings beyond focal farms. Limiting orchard sprays, while reducing on‐farm exposures, will not protect far‐foraging bees from off‐farm exposures such as thiamethoxam, which we hypothesize is coming from nearby seed‐treated corn fields planted during apple bloom. 
    more » « less