skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Response times of a degenerately doped semiconductor based plasmonic modulator
We present a transient response study of a semiconductor based plasmonic switch. The proposed device operates through active control and modulation of localized electron density waves, i.e., surface plasmon polaritons (SPPs) at degenerately doped In0.53Ga0.47As based PN++junctions. A set of devices is designed and fabricated, and its optical and electronic behaviors are studied both experimentally and theoretically. Optical characterization shows far-field reflectivity modulation, a result of electrical tuning of the SPPs at the PN++junctions for mid-IR wavelengths, with significant 3 dB bandwidths. Numerical studies using a self-consistent electro-optic multi-physics model are performed to uncover the temporal response of the devices’ electromagnetic and kinetic mechanisms facilitating the SPP switching at the PN++junctions. Numerical simulations show strong synergy with the experimental results, validating the claim of potential optoelectronic switching with a 3 dB bandwidth as high as 2 GHz. Thus, this study confirms that the presented SPP diode architecture can be implemented for high-speed control of SPPs through electrical means, providing a pathway toward fast all-semiconductor plasmonic devices.  more » « less
Award ID(s):
2138198
PAR ID:
10405404
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
40
Issue:
5
ISSN:
0740-3224; JOBPDE
Format(s):
Medium: X Size: Article No. 978
Size(s):
Article No. 978
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe 2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 10 5  m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements. 
    more » « less
  2. Abstract Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects.  In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties. 
    more » « less
  3. Space-variant control of optical wavefronts is important for many applications in photonics, such as the generation of structured light beams, and is achieved with spatial light modulators. Commercial devices, at present, are based on liquid-crystal and digital micromirror technologies and are typically limited to kilohertz switching speeds. To realize significantly higher operating speeds, new technologies and approaches are necessary. Here we demonstrate two-dimensional control of free-space optical fields at a wavelength of 1,550 nm at a 1 GHz modulation speed using a programmable plasmonic phase modulator based on near-field interactions between surface plasmons and materials with an electrooptic response. High χ(2) and χ(3) dielectric thin films of either aluminium nitride or silicon-rich silicon nitride are used as an active modulation layer in a surface plasmon resonance configuration to realize programmable space-variant control of optical wavefronts in a 4 × 4 pixel array at high speed. 
    more » « less
  4. Abstract The application of hardware‐based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming‐free operation with switching parameters that can be tuned by optical illumination. Using temperature‐dependent electrical measurements, conductive atomic force microscopy (C‐AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as −4.6% K−1at 423 K. The utility of these devices is illustrated by demonstrating in‐sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices. 
    more » « less
  5. Abstract Due to their ability to strongly modify the local optical field through the excitation of surface plasmon polaritons (SPPs), plasmonic nanostructures are often used to reshape the emission direction and enhance the radiative decay rate of quantum emitters, such as semiconductor quantum dots (QDs). These features are essential for quantum information processing, nanoscale photonic circuitry, and optoelectronics. However, the modification and enhancement demonstrated thus far have typically led to drastic alterations of the local energy density of the emitters, and hence their intrinsic optical properties, leaving little room for active control. Here, dynamic tuning of the energy states of a single semiconductor QD is demonstrated by optically modifying its local dielectric environment with a nearby plasmonic structure, instead of directly coupling it to the QD. This technique leaves intact the intrinsic optical properties of the QD, while enabling a reversible all‐optical control mechanism that operates below the diffraction limit at low power levels. 
    more » « less