skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Federated learning framework integrating REFINED CNN and Deep Regression Forests
Abstract SummaryPredictive learning from medical data incurs additional challenge due to concerns over privacy and security of personal data. Federated learning, intentionally structured to preserve high level of privacy, is emerging to be an attractive way to generate cross-silo predictions in medical scenarios. However, the impact of severe population-level heterogeneity on federated learners is not well explored. In this article, we propose a methodology to detect presence of population heterogeneity in federated settings and propose a solution to handle such heterogeneity by developing a federated version of Deep Regression Forests. Additionally, we demonstrate that the recently conceptualized REpresentation of Features as Images with NEighborhood Dependencies CNN framework can be combined with the proposed Federated Deep Regression Forests to provide improved performance as compared to existing approaches. Availability and implementationThe Python source code for reproducing the main results are available on GitHub: https://github.com/DanielNolte/FederatedDeepRegressionForests. Contactranadip.pal@ttu.edu Supplementary informationSupplementary data are available at Bioinformatics Advances online.  more » « less
Award ID(s):
2007903
PAR ID:
10405420
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nikolski, Macha (Ed.)
    Abstract MotivationGenome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations. However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of large-scale collaborative GWAS. ResultsThis work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the proposed method and the promise for its application for large-scale collaborative GWAS. Availability and implementationThe source code and data are available at https://github.com/amioamo/TDS. 
    more » « less
  2. Abstract ObjectiveEmerging technologies (eg, wearable devices) have made it possible to collect data directly from individuals (eg, time-series), providing new insights on the health and well-being of individual patients. Broadening the access to these data would facilitate the integration with existing data sources (eg, clinical and genomic data) and advance medical research. Compared to traditional health data, these data are collected directly from individuals, are highly unique and provide fine-grained information, posing new privacy challenges. In this work, we study the applicability of a novel privacy model to enable individual-level time-series data sharing while maintaining the usability for data analytics. Methods and materialsWe propose a privacy-protecting method for sharing individual-level electrocardiography (ECG) time-series data, which leverages dimensional reduction technique and random sampling to achieve provable privacy protection. We show that our solution provides strong privacy protection against an informed adversarial model while enabling useful aggregate-level analysis. ResultsWe conduct our evaluations on 2 real-world ECG datasets. Our empirical results show that the privacy risk is significantly reduced after sanitization while the data usability is retained for a variety of clinical tasks (eg, predictive modeling and clustering). DiscussionOur study investigates the privacy risk in sharing individual-level ECG time-series data. We demonstrate that individual-level data can be highly unique, requiring new privacy solutions to protect data contributors. ConclusionThe results suggest our proposed privacy-protection method provides strong privacy protections while preserving the usefulness of the data. 
    more » « less
  3. null (Ed.)
    Privacy concerns on sharing sensitive data across institutions are particularly paramount for the medical domain, which hinders the research and development of many applications, such as cohort construction for cross-institution observational studies and disease surveillance. Not only that, the large volume and heterogeneity of the patient data pose great challenges for retrieval and analysis. To address these challenges, in this paper, we propose a Federated Patient Hashing (FPH) framework, which collaboratively trains a retrieval model stored in a shared memory while keeping all the patient-level information in local institutions. Specifically, the objective function is constructed by minimization of a similarity preserving loss and a heterogeneity digging loss, which preserves both inter-data and intra-data relationships. Then, by leveraging the concept of Bregman divergence, we implement optimization in a federated manner in both centralized and decentralized learning settings, without accessing the raw training data across institutions. In addition to this, we also analyze the convergence rate of the FPH framework. Extensive experiments on real-world clinical data set from critical care are provided to demonstrate the effectiveness of the proposed method on similar patient matching across institutions. 
    more » « less
  4. Abstract MotivationPolygenic risk score (PRS) has been widely exploited for genetic risk prediction due to its accuracy and conceptual simplicity. We introduce a unified Bayesian regression framework, NeuPred, for PRS construction, which accommodates varying genetic architectures and improves overall prediction accuracy for complex diseases by allowing for a wide class of prior choices. To take full advantage of the framework, we propose a summary-statistics-based cross-validation strategy to automatically select suitable chromosome-level priors, which demonstrates a striking variability of the prior preference of each chromosome, for the same complex disease, and further significantly improves the prediction accuracy. ResultsSimulation studies and real data applications with seven disease datasets from the Wellcome Trust Case Control Consortium cohort and eight groups of large-scale genome-wide association studies demonstrate that NeuPred achieves substantial and consistent improvements in terms of predictive r2 over existing methods. In addition, NeuPred has similar or advantageous computational efficiency compared with the state-of-the-art Bayesian methods. Availability and implementationThe R package implementing NeuPred is available at https://github.com/shuangsong0110/NeuPred. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract MotivationAlternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc. ResultsIn this study, we present a novel approach, DIFFUSE (Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences. Availability and implementationhttps://github.com/haochenucr/DIFFUSE. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less