skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Federated learning framework integrating REFINED CNN and Deep Regression Forests
Abstract SummaryPredictive learning from medical data incurs additional challenge due to concerns over privacy and security of personal data. Federated learning, intentionally structured to preserve high level of privacy, is emerging to be an attractive way to generate cross-silo predictions in medical scenarios. However, the impact of severe population-level heterogeneity on federated learners is not well explored. In this article, we propose a methodology to detect presence of population heterogeneity in federated settings and propose a solution to handle such heterogeneity by developing a federated version of Deep Regression Forests. Additionally, we demonstrate that the recently conceptualized REpresentation of Features as Images with NEighborhood Dependencies CNN framework can be combined with the proposed Federated Deep Regression Forests to provide improved performance as compared to existing approaches. Availability and implementationThe Python source code for reproducing the main results are available on GitHub: https://github.com/DanielNolte/FederatedDeepRegressionForests. Contactranadip.pal@ttu.edu Supplementary informationSupplementary data are available at Bioinformatics Advances online.  more » « less
Award ID(s):
2007903
PAR ID:
10405420
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial Intelligence (AI) has demonstrated strong potential in automating medical imaging tasks, with potential applications across disease diagnosis, prognosis, treatment planning, and posttreatment surveillance. However, privacy concerns surrounding patient data remain a major barrier to the widespread adoption of AI in clinical practice, as large and diverse training datasets are essential for developing accurate, robust, and generalizable AI models. Federated Learning offers a privacy-preserving solution by enabling collaborative model training across institutions without sharing sensitive data. Instead, model parameters, such as model weights, are exchanged between participating sites. Despite its potential, federated learning is still in its early stages of development and faces several challenges. Notably, sensitive information can still be inferred from the shared model parameters. Additionally, postdeployment data distribution shifts can degrade model performance, making uncertainty quantification essential. In federated learning, this task is particularly challenging due to data heterogeneity across participating sites. This review provides a comprehensive overview of federated learning, privacy-preserving federated learning, and uncertainty quantification in federated learning. Key limitations in current methodologies are identified, and future research directions are proposed to enhance data privacy and trustworthiness in medical imaging applications 
    more » « less
  2. Nikolski, Macha (Ed.)
    Abstract MotivationGenome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations. However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of large-scale collaborative GWAS. ResultsThis work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the proposed method and the promise for its application for large-scale collaborative GWAS. Availability and implementationThe source code and data are available at https://github.com/amioamo/TDS. 
    more » « less
  3. null (Ed.)
    Privacy concerns on sharing sensitive data across institutions are particularly paramount for the medical domain, which hinders the research and development of many applications, such as cohort construction for cross-institution observational studies and disease surveillance. Not only that, the large volume and heterogeneity of the patient data pose great challenges for retrieval and analysis. To address these challenges, in this paper, we propose a Federated Patient Hashing (FPH) framework, which collaboratively trains a retrieval model stored in a shared memory while keeping all the patient-level information in local institutions. Specifically, the objective function is constructed by minimization of a similarity preserving loss and a heterogeneity digging loss, which preserves both inter-data and intra-data relationships. Then, by leveraging the concept of Bregman divergence, we implement optimization in a federated manner in both centralized and decentralized learning settings, without accessing the raw training data across institutions. In addition to this, we also analyze the convergence rate of the FPH framework. Extensive experiments on real-world clinical data set from critical care are provided to demonstrate the effectiveness of the proposed method on similar patient matching across institutions. 
    more » « less
  4. Abstract ObjectiveEmerging technologies (eg, wearable devices) have made it possible to collect data directly from individuals (eg, time-series), providing new insights on the health and well-being of individual patients. Broadening the access to these data would facilitate the integration with existing data sources (eg, clinical and genomic data) and advance medical research. Compared to traditional health data, these data are collected directly from individuals, are highly unique and provide fine-grained information, posing new privacy challenges. In this work, we study the applicability of a novel privacy model to enable individual-level time-series data sharing while maintaining the usability for data analytics. Methods and materialsWe propose a privacy-protecting method for sharing individual-level electrocardiography (ECG) time-series data, which leverages dimensional reduction technique and random sampling to achieve provable privacy protection. We show that our solution provides strong privacy protection against an informed adversarial model while enabling useful aggregate-level analysis. ResultsWe conduct our evaluations on 2 real-world ECG datasets. Our empirical results show that the privacy risk is significantly reduced after sanitization while the data usability is retained for a variety of clinical tasks (eg, predictive modeling and clustering). DiscussionOur study investigates the privacy risk in sharing individual-level ECG time-series data. We demonstrate that individual-level data can be highly unique, requiring new privacy solutions to protect data contributors. ConclusionThe results suggest our proposed privacy-protection method provides strong privacy protections while preserving the usefulness of the data. 
    more » « less
  5. Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintaining data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications. 
    more » « less