Introduction: Artificial intelligence (AI) technologies continue to attract interest from a broad range of disciplines in recent years, including health. The increase in computer hardware and software applications in medicine, as well as digitization of health-related data together fuel progress in the development and use of AI in medicine. This progress provides new opportunities and challenges, as well as directions for the future of AI in health. Objective: The goals of this survey are to review the current state of AI in health, along with opportunities, challenges, and practical implications. This review highlights recent developments over the past five yearsmore »
This content will become publicly available on December 1, 2022
A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications
Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintaining data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications.
- Award ID(s):
- 1946619
- Publication Date:
- NSF-PAR ID:
- 10324623
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 23
- Page Range or eLocation-ID:
- 11191
- ISSN:
- 2076-3417
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients withmore »
-
Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to the same interpretation as standard centralized statisticalmore »
-
Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weightsmore »
-
Building a predictive model based on historical Electronic Health Records (EHRs) for personalized healthcare has become an active research area. Benefiting from the powerful ability of feature ex- traction, deep learning (DL) approaches have achieved promising performance in many clinical prediction tasks. However, due to the lack of interpretability and trustworthiness, it is difficult to apply DL in real clinical cases of decision making. To address this, in this paper, we propose an interpretable and trustworthy predictive model (INPREM) for healthcare. Firstly, INPREM is designed as a linear model for interpretability while encoding non-linear rela- tionships into the learning weightsmore »