skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protecting pollinators and our food supply: understanding and managing threats to pollinator health
Abstract Global pollinator declines threaten food production and natural ecosystems. The drivers of declines are complicated and driven by numerous factors such as pesticide use, loss of habitat, rising pathogens due to commercial bee keeping and climate change. Halting and reversing pollinator declines will require a multidisciplinary approach and international cooperation. Here, we summarize 20 presentations given in the symposium ‘Protecting pollinators and our food supply: Understanding and managing threats to pollinator health’ at the 19th Congress of the International Union for the Study of Social Insects in San Diego, 2022. We then synthesize the key findings and discuss future research areas such as better understanding the impact of anthropogenic stressors on wild bees.  more » « less
Award ID(s):
2142778 2231637 1736019
PAR ID:
10405465
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Insectes Sociaux
Volume:
70
Issue:
1
ISSN:
0020-1812
Page Range / eLocation ID:
5 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given widespread concerns over human-mediated bee declines in abundance and species richness, conservation efforts are increasingly focused on maintaining natural habitats to support bee diversity in otherwise resource-poor environments. However, natural habitat patches can vary in composition, impacting landscape-level heterogeneity and affecting plant-pollinator interactions. Plant-pollinator networks, especially those based on pollen loads, can provide valuable insight into mutualistic relationships, such as revealing the degree of pollination specialization in a community; yet, local and landscape drivers of these network indices remain understudied within urbanizing landscapes. Beyond networks, analyzing pollen collection can reveal key information about species-level pollen preferences, providing plant restoration information for urban ecosystems. Through bee collection, vegetation surveys, and pollen load identification across ~350 km of urban habitat, we studied the impact of local and landscape-level management on plant-pollinator networks. We also quantified pollinator preferences for plants within urban grasslands. Bees exhibited higher foraging specialization with increasing habitat heterogeneity and visited fewer flowering species (decreased generality) with increasing semi-natural habitat cover. We also found strong pollinator species-specific flower foraging preferences, particularly for Asteraceae plants. We posit that maintaining native forbs and supporting landscape-level natural habitat cover and heterogeneity can provide pollinators with critical food resources across urbanizing ecosystems. 
    more » « less
  2. null (Ed.)
    Most of the world's crops depend on pollinators, so declines in both managed and wild bees raise concerns about food security. However, the degree to which insect pollination is actually limiting current crop production is poorly understood, as is the role of wild species (as opposed to managed honeybees) in pollinating crops, particularly in intensive production areas. We established a nationwide study to assess the extent of pollinator limitation in seven crops at 131 locations situated across major crop-producing areas of the USA. We found that five out of seven crops showed evidence of pollinator limitation. Wild bees and honeybees provided comparable amounts of pollination for most crops, even in agriculturally intensive regions. We estimated the nationwide annual production value of wild pollinators to the seven crops we studied at over $1.5 billion; the value of wild bee pollination of all pollinator-dependent crops would be much greater. Our findings show that pollinator declines could translate directly into decreased yields or production for most of the crops studied, and that wild species contribute substantially to pollination of most study crops in major crop-producing regions. 
    more » « less
  3. Global insect pollinator declines have prompted habitat restoration efforts, including pollinator-friendly gardening. Gardens can provide nectar and pollen for adult insects and offer reproductive resources, such as nesting sites and caterpillar host plants. We conducted a review and meta-analysis to examine how decisions made by gardeners on plant selection and garden maintenance influence pollinator survival, abundance, and diversity. We also considered characteristics of surrounding landscapes and the impacts of pollinator natural enemies. Our results indicated that pollinators responded positively to high plant species diversity, woody vegetation, garden size, and sun exposure and negatively to the separation of garden habitats from natural sites. Within-garden features more strongly influenced pollinators than surrounding landscape factors. Growing interest in gardening for pollinators highlights the need to better understand how gardens contribute to pollinator conservation and how some garden characteristics can enhance the attractiveness and usefulness of gardens to pollinators. Further studies examining pollinator reproduction, resource acquisition, and natural enemies in gardens and comparing gardens with other restoration efforts and to natural habitats are needed to increase the value of human-made habitats for pollinators. 
    more » « less
  4. Climate change, agricultural intensification, and other anthropogenic ecosystem challenges have caused declines in the diversity and abundance of insect pollinators. In response to these declines, entomologists have called for greater attention to insect pollinator conservation. Conservation primarily aims to protect groups of non-human animals—populations or species—with only secondary concern for the welfare of individual animals. While conservation and animal welfare goals are sometimes aligned, they often are not. And because animal welfare comes second, it tends to be sacrificed when in tension with conversation priorities. Consider, for example, lethal sampling to monitor many pollinator populations. Growing evidence suggests that the welfare of individual insect pollinators may be morally significant, particularly in the Hymenoptera and Diptera. Considering insect welfare in conservation practices and policies presents many challenges as, in the face of rapid, anthropogenic change, it may be impossible to avoid harming individual animals while promoting diverse populations. We suggest some practical, implementable strategies that can allow for more robust integration of animal welfare goals into insect pollinator conservation. By following these strategies, entomologists may be able to find policies and practices that promote the health of ecosystems and the individual animals within them. 
    more » « less
  5. Infectious disease is a major driver of biodiversity loss, but how disease threatens pollinator communities remains poorly understood. Here, we review the plant–pollinator–pathogen literature to identify mechanisms by which plant and pollinator traits and community composition influence pathogen transmission and assess consequences of transmission on plant and pollinator fitness. We find that plant and pollinator traits that increase floral contact can amplify transmission, but community-level factors such as plant and pollinator abundance are often correlated and can counteract one another. Although disease reduces pollinator fitness in some species, little research has assessed cascading effects on pollination, and taxonomic representation outside of honey bees and bumble bees remains poor. Major open challenges include (a) disentangling correlations between plant and pollinator abundance to understand how community composition impacts pathogen transmission and (b) distinguishing when pathogen transmission results in disease. Addressing these issues, as well as expanding taxonomic representation of pollinators, will deepen our understanding of how pathogens impact diverse pollinator communities. 
    more » « less