skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2231637

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 μl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context ofVarroacontrol and lithium's effect on bipolar disorder. 
    more » « less
  2. Abstract The effects of acute sublethal doses of coumaphos, an acaricide used againstVarroa destructorinfestation in beekeeping, on the locomotor activities of four native honeybee subspecies of Türkiye including two ecotypes (Carniolan honeybee -A. m. carnica, Syrian honeybee -A. m. syriaca, Caucasian honeybee-A. m. caucasica, and Muğla and Yığılca ecotypes of Anatolian honeybeeA. m. anatoliaca) were investigated using an individual locomotor activity monitoring system. Analysis of locomotor activity data in the first 12-h, last 12-h, and 24-h time periods showed that bees fromcaucasicaandcarnicasubspecies were not affected by coumaphos at all three acute doses (1, 2, and 5 μg coumaphos in 10 μl sucrose syrup for each bee). In contrast, bees fromA. m. syriacasubspecies showed significantly elevated locomotor activity levels at 2 and 5 μg coumaphos doses within the first 12 h. Bees from both Muğla and Yığılca ecotypes ofanatoliacasubspecies also showed elevated locomotor activity levels at 5 μg coumaphos dose but the magnitude of increase was lower in these ecotypes compared to that seen insyriacasubspecies in the first 12-h period. In general, increasing doses of coumaphos resulted in increased locomotor activity (locomotor activity), with differences in sensitivity across honeybee populations. Possible mechanisms underlying this variance and suggestions for further studies are discussed. 
    more » « less
  3. Circadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms. At the same time, foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies exploring the ontogeny of circadian rhythms of workers showed that the onset of rhythms is faster in the colony environment (~2 days) than if workers were immediately isolated after eclosion (7–9 days). However, which specific environmental factors influenced the early development of worker circadian rhythms remained unknown. We hypothesized that brood nest temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at brood nest-like temperatures (33–35 °C) in the laboratory develop circadian rhythms faster and in greater proportion than bees kept at lower temperatures (24–26 °C). In addition, we examined if the effect of colony temperature during the first 48 h after emergence is sufficient to increase the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals exposed to 35 °C during the first 48 h developed circadian rhythms compared to individuals kept at 25 °C, suggesting a critical developmental period where brood nest temperatures are important for the development of the circadian system. Together, our findings show that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers. 
    more » « less
  4. Introduction Interest for bee microbiota has recently been rising, alleviating the gap in knowledge in regard to drivers of solitary bee gut microbiota. However, no study has addressed the microbial acquisition routes of tropical solitary bees. For both social and solitary bees, the gut microbiota has several essential roles such as food processing and immune responses. While social bees such as honeybees maintain a constant gut microbiota by direct transmission from individuals of the same hive, solitary bees do not have direct contact between generations. They thus acquire their gut microbiota from the environment and/or the provision of their brood cell. To establish the role of life history in structuring the gut microbiota of solitary bees, we characterized the gut microbiota of Centris decolorata from a beach population in Mayagüez, Puerto Rico. Females provide the initial brood cell provision for the larvae, while males patrol the nest without any contact with it. We hypothesized that this behavior influences their gut microbiota, and that the origin of larval microbiota is from brood cell provisions. Methods We collected samples from adult females and males of C. decolorata ( n  = 10 each, n  = 20), larvae ( n  = 4), and brood cell provisions ( n  = 10). For comparison purposes, we also sampled co-occurring female foragers of social Apis mellifera ( n  = 6). The samples were dissected, their DNA extracted, and gut microbiota sequenced using 16S rRNA genes. Pollen loads of A. mellifera and C. decolorata were analyzed and interactions between bee species and their plant resources were visualized using a pollination network. Results While we found the gut of A. mellifera contained the same phylotypes previously reported in the literature, we noted that the variability in the gut microbiota of solitary C. decolorata was significantly higher than that of social A. mellifera . Furthermore, the microbiota of adult C. decolorata mostly consisted of acetic acid bacteria whereas that of A. mellifera mostly had lactic acid bacteria. Among C. decolorata , we found significant differences in alpha and beta diversity between adults and their brood cell provisions (Shannon and Chao1 p  < 0.05), due to the higher abundance of families such as Rhizobiaceae and Chitinophagaceae in the brood cells, and of Acetobacteraceae in adults. In addition, the pollination network analysis indicated that A. mellifera had a stronger interaction with Byrsonima sp. and a weaker interaction with Combretaceae while interactions between C. decolorata and its plant resources were constant with the null model. Conclusion Our data are consistent with the hypothesis that behavioral differences in brood provisioning between solitary and social bees is a factor leading to relatively high variation in the microbiota of the solitary bee. 
    more » « less
  5. Abstract Global pollinator declines threaten food production and natural ecosystems. The drivers of declines are complicated and driven by numerous factors such as pesticide use, loss of habitat, rising pathogens due to commercial bee keeping and climate change. Halting and reversing pollinator declines will require a multidisciplinary approach and international cooperation. Here, we summarize 20 presentations given in the symposium ‘Protecting pollinators and our food supply: Understanding and managing threats to pollinator health’ at the 19th Congress of the International Union for the Study of Social Insects in San Diego, 2022. We then synthesize the key findings and discuss future research areas such as better understanding the impact of anthropogenic stressors on wild bees. 
    more » « less