skip to main content


Title: Should Reversible Convective Inhibition be Used when Determining the Inflow Layer of a Convective Storm?
Abstract

Convective inhibition (CIN) is one of the parameters used by forecasters to determine the inflow layer of a convective storm, but little work has examined the best way to compute CIN. One decision that must be made is whether to lift parcels following a pseudoadiabat (removing hydrometeors as the parcel ascends) or reversible moist adiabat (retaining hydrometeors). To determine which option is best, idealized simulations of ordinary convection are examined using a variety of base states with different reversible CIN values for parcels originating in the lowest 500 m. Parcel trajectories suggest that ascent over the lowest few kilometers, where CIN is typically accumulated, is best conceptualized as a reversible moist adiabatic process instead of a pseudoadiabatic process. Most inflow layers do not contain parcels with substantial reversible CIN, despite these parcels possessing ample convective available potential energy and minimal pseudoadiabatic CIN. If a stronger initiation method is used, or hydrometeor loading is ignored, simulations can ingest more parcels with large amounts of reversible CIN. These results suggest that reversible CIN, not pseudoadiabatic CIN, is the physically relevant way to compute CIN and that forecasters may benefit from examining reversible CIN instead of pseudoadiabatic CIN when determining the inflow layer.

 
more » « less
Award ID(s):
1821885
NSF-PAR ID:
10405546
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
10
ISSN:
0022-4928
Page Range / eLocation ID:
p. 3047-3067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze the evolution of convective available potential energy (CAPE) and convective inhibition (CIN) in the days leading up to episodes of high CAPE in North America. The widely accepted theory for CAPE buildup, known as the advection hypothesis, states that high moist static energy (MSE) parcels of air moving north from the Gulf of Mexico become trapped under warm but dry parcels moving east from over elevated dry terrain. If and when the resulting CIN erodes, severe convection can occur due to the large energy difference between the boundary layer parcels and cool air aloft. However, our results, obtained via backward Lagrangian tracking of parcels at locations of peak CAPE, show that large values of CAPE are generated mainly via boundary layer moistening in the days leading up to the time of peak CAPE, and that a large portion of this moisture buildup happens on the day of peak CAPE. On the other hand, the free-tropospheric temperature above these tracked parcels rarely changes significantly over the days leading up to such occurrences. In addition, the CIN that allows for this buildup of CAPE arises mostly from unusually strong boundary layer cooling the night before peak CAPE, and has a contribution from differential advection of unusually warm air above the boundary layer to form a capping inversion. These results have important implications for the climatology of severe convective events, as it emphasizes the role of surface properties and their gradients in the frequency and intensity of high CAPE occurrences.

    Significance Statement

    Severe convective events, such as thunderstorms, tornadoes, and hail storms, are among the most deadly and destructive weather systems. Although forecasters are quite good at predicting the probability of these events a few days in advance, there is currently no reliable seasonal prediction method of severe convection. We show that the buildup of energy for severe convection relies on both strong surface evaporation during the day of peak energy and anomalous cooling the night before. This progress represents a step toward understanding what controls the frequency of severe convective events on seasonal and longer time scales, including the effect of greenhouse gas–induced climate change.

     
    more » « less
  2. Abstract

    Observations and cloud‐resolving simulations suggest that a convective updraft structure drawing mass from a deep lower‐tropospheric layer occurs over a wide range of conditions. This occurs for both mesoscale convective systems (MCSs) and less‐organized convection, raising the question: is there a simple, universal characteristic governing the deep inflow? Here, we argue that nonlocal dynamics of the response to buoyancy are key. For precipitating deep‐convective features including horizontal scales comparable to a substantial fraction of the troposphere depth, the response to buoyancy tends to yield deep inflow into the updraft mass flux. Precipitation features in this range of scales are found to dominate contributions to observed convective precipitation for both MCS and less‐organized convection. The importance of such nonlocal dynamics implies thinking beyond parcel models with small‐scale turbulence for representation of convection in climate models. Solutions here lend support to investment in parameterizations at a complexity between conventional and superparameterization.

     
    more » « less
  3. Atmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE.

     
    more » « less
  4. null (Ed.)
    Abstract In this study we compared 3.7 mln rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, mid-tropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-tropospheric moisture and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA2, ERA5 has higher correlations and lower mean absolute errors. MERRA2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevations stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalysis for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary-layer conditions compared to less numerous pressure levels. 
    more » « less
  5. Abstract

    A 3‐D cloud‐resolving model has been used to investigate the domain size dependence of simulations of convective self‐aggregation (CSA) in radiative‐convective equilibrium. We investigate how large a domain is needed to allow multiple convective clusters and also how the properties equilibrated CSA depend on domain size. We used doubly periodic square domains of widths 768, 1,536, 3,072, and 6,144 km, over 350 simulated days. In the 768‐, 1,536‐, and 3,072‐km domains, the simulations produced circular convective clusters surrounded by broader regions of dry, subsiding air. In the 6,144‐km domain, the convection ultimately forms two semiconnected bands. As the domain size increases, equilibrated CSA moistens in two ways. First, as the circulation widens, this leads to stronger boundary layer winds and a more humid boundary layer. Second, the stronger inflow into the convective region boundary layer is associated with a warmer convective region boundary layer, which leads to intensified deep convection, more melting and freezing near the freezing level, enhanced midlevel stability, increased congestus activity, and detrainment of moist air into the dry region. In the larger domains, the deep convection and congestus slowly oscillate out of phase with each other with a time period of about 25 to 30 days. We hypothesize that other important domain size sensitivities, including a decrease in net moist static energy export from the convective region, are fundamentally linked to the increasing relationship between domain size and boundary layer wind speed. Our results suggest that the statistics of CSA converge only for domains wider than about 3,000 km.

     
    more » « less