Abstract We present a spectral analysis of NuSTAR and NICER observations of the luminous, persistently accreting neutron star (NS) low-mass X-ray binary Cygnus X-2. The data were divided into different branches that the source traces out on the Z-track of the X-ray color–color diagram; namely, the horizontal branch, the normal branch, and the vertex between the two. The X-ray continuum spectrum was modeled in two different ways that produced comparable quality fits. The spectra showed clear evidence of a reflection component in the form of a broadened Fe K line, as well as a lower-energy emission feature near 1 keV likely due to an ionized plasma located far from the innermost accretion disk. We account for the reflection spectrum with two independent models ( relxillns and rdblur*rfxconv ). The inferred inclination is in agreement with earlier estimates from optical observations of ellipsoidal lightcurve modeling ( relxillns : i = 67° ± 4°; rdblur*rfxconv : i = 60° ± 10°). The inner disk radius remains close to the NS ( R in ≤ 1.15 R ISCO ) regardless of the source position along the Z-track or how the 1 keV feature is modeled. Given the optically determined NS mass of 1.71 ± 0.21 M ⊙ , this corresponds to a conservative upper limit of R in ≤ 19.5 km for M = 1.92 M ⊙ or R in ≤ 15.3 km for M = 1.5 M ⊙ . We compare these radius constraints to those obtained from NS gravitational wave merger events and recent NICER pulsar lightcurve modeling measurements. 
                        more » 
                        « less   
                    
                            
                            The Neutron Star Population in M28: A Joint Chandra/GBT Look at Pulsar Paradise
                        
                    
    
            Abstract We present the results of a deep study of the neutron star (NS) population in the globular cluster M28 (NGC 6626), using the full 330 ks 2002–2015 ACIS data set from the Chandra X-ray Observatory and coordinated radio observations taken with the Green Bank Telescope (GBT) in 2015. We investigate the X-ray luminosity ( L X ), spectrum, and orbital modulation of the seven known compact binary millisecond pulsars in the cluster. We report two simultaneous detections of the redback PSR J1824−2452I (M28I) and its X-ray counterpart at L X = [8.3 ± 0.9] × 10 31 erg s −1 . We discover a double-peaked X-ray orbital flux modulation in M28I during its pulsar state, centered around pulsar inferior conjunction. We analyze the spectrum of the quiescent NS low-mass X-ray binary to constrain its mass and radius. Using both hydrogen and helium NS atmosphere models, we find an NS radius of R = 9.2–11.5 km and R = 13.0–17.5 km, respectively, for an NS mass of 1.4 M ⊙ (68% confidence ranges). We also search for long-term variability in the 46 brightest X-ray sources and report the discovery of six new variable low-luminosity X-ray sources in M28. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2020265
- PAR ID:
- 10405755
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 941
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT In 2019 November, MAXI detected an X-ray outburst from the known Be X-ray binary system RX J0209.6−7427 located in the outer wing of the Small Magellanic Cloud. We followed the outburst of the system with NICER, which led to the discovery of X-ray pulsations with a period of 9.3 s. We analysed simultaneous X-ray data obtained with NuSTAR and NICER, allowing us to characterize the spectrum and provide an accurate estimate of its bolometric luminosity. During the outburst, the maximum broad-band X-ray luminosity of the system reached (1–2) × 1039 erg s−1, thus exceeding by about one order of magnitude the Eddington limit for a typical 1.4 M⊙ mass neutron star (NS). Monitoring observations with Fermi/GBM and NICER allowed us to study the spin evolution of the NS and compare it with standard accretion torque models. We found that the NS magnetic field should be of the order of 3 × 1012 G. We conclude that RX J0209.6−7427 exhibited one of the brightest outbursts observed from a Be X-ray binary pulsar in the Magellanic Clouds, reaching similar luminosity level to the 2016 outburst of SMC X-3. Despite the super-Eddington luminosity of RX J0209.6−7427, the NS appears to have only a moderate magnetic field strength.more » « less
- 
            ABSTRACT During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NS’s open magnetic flux – and hence increases its wind luminosity – relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of ∼1 Jy·ms at ∼GHz frequencies lasts ∼1–500 ms following the merger for a source at ∼3 Gpc (Bd/1012 G)8/9, where Bd is the dipole field strength of the more strongly magnetized star. Given an outflow geometry concentrated along the binary equatorial plane, the signal may be preferentially observable for high-inclination systems, that is, those least likely to produce a detectable gamma-ray burst.more » « less
- 
            Abstract The Tarantula Nebula (30 Doradus, 30 Dor) is the most important star-forming complex in the Local Group, offering a microscope on starburst astrophysics. At its heart lies the exceptionally rich young stellar cluster R136, containing the most massive stars known. Stellar winds and supernovae have carved 30 Dor into an amazing display of arcs, pillars, and bubbles. We present first results and advanced data-processing products from the 2 Ms Chandra X-ray Visionary Project, “The Tarantula—Revealed by X-rays” (T-ReX). The 3615 point sources in the T-ReX catalog include massive stars, compact objects, binaries, bright pre-main-sequence stars, and compact young stellar (sub)clusters in 30 Dor. After removing point sources and excluding the exceptionally bright supernova remnant N157B (30 Dor B), the global diffuse X-ray maps reveal hot plasma structures resolved at 1–10 pc scales, with an absorption-corrected total-band (0.5–7 keV) X-ray luminosity of 2.110 × 1037erg s−1. Spatially resolved spectral modeling provides evidence for emission lines enhanced by charge-exchange processes at the interfaces. We identify a candidate for the oldest X-ray pulsar detected to date in 30 Dor, PSR J0538-6902, inside a newly resolved arcuate X-ray wind nebula, the Manta Ray. The long temporal baseline of T-ReX allowed monitoring of dozens of massive stars, several showing periodic variability tied to binary orbital periods, and captured strong flares from at least three low-mass Galactic foreground stars.more » « less
- 
            Abstract We present the study of multiwavelength observations of an unidentified Fermi Large Area Telescope (LAT) source, 4FGL J1910.7−5320, a new candidate redback millisecond pulsar binary. In the 4FGL 95% error region of 4FGL J1910.7−5320, we find a possible binary with a 8.36 hr orbital period from the Catalina Real-Time Transient Survey, confirmed by optical spectroscopy using the SOAR telescope. This optical source was recently independently discovered as a redback pulsar by the TRAPUM project, confirming our prediction. We fit the optical spectral energy distributions of 4FGL J1910.7−5320 with a blackbody model, inferring a maximum distance of 4.1 kpc by assuming that the companion fills its Roche lobe with a radius ofR= 0.7R☉. Using a 12.6 ks Chandra X-ray observation, we identified an X-ray counterpart for 4FGL J1910.7−5320, with a spectrum that can be described by an absorbed power law with a photon index of 1.0 ± 0.4. The spectrally hard X-ray emission shows tentative evidence for orbital variability. Using more than 12 yr of Fermi-LAT data, we refined the position of theγ-ray source, and the optical candidate still lies within the 68% positional error circle. In addition to 4FGL J1910.7−5320, we find a variable optical source with a periodic signal of 4.28 hr inside the 4FGL catalog 95% error region of another unidentified Fermi source, 4FGL J2029.5−4237. However, theγ-ray source does not have a significant X-ray counterpart in an 11.7 ks Chandra observation, with a 3σflux upper limit of 2.4 × 10−14erg cm−2s−1(0.3–7 keV). Moreover, the optical source is outside our updated Fermi-LAT 95% error circle. These observational facts all suggest that this new redback millisecond pulsar powers the gamma-ray source 4FGL J1910.7−5320 while 4FGL J2029.5−4237 is unlikely theγ-ray counterpart to the 4.28 hr variable.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    