Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like Hubble Space Telescope and JWST. The analysis produced 14 findings, which fall into three science themes encompassing (i) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (ii) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’), and (iii) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.
more » « less- NSF-PAR ID:
- 10405813
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- RAS Techniques and Instruments
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2752-8200
- Page Range / eLocation ID:
- p. 148-206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.more » « less
-
Numerous numerical studies have been carried out in recent years that simulate different aspects of star-planet interactions. These studies focus mostly on hot Jupiters with sun-like stars. However, more realistic simulations require the inclusion of a wide range of stellar types in the study of stellar-planetary interactions. In this study, I use MHD simulations to model star-planet interactions assuming different stellar types and a Jovian exoplanet.more » « less
-
Ages of “Singles” versus “Multis”: Predictions for Dynamical Sculpting over Gyr in the Kepler Sample
Abstract The sample of host stars with multiple transiting planets has illuminated the orbital architectures of exoplanetary systems. These architectures may be shaped mostly by formation conditions, be continually sculpted by ongoing dynamical processes, or both. As more studies have placed planet occurrence within a galactic context, evidence has emerged for variable planet multiplicity over time. In this manuscript, we investigate the use of transit multiplicity as a tool to constrain longer-timescale (>1 Gyr) dynamical sculpting. First, with a suite of injection-and-recovery tests, we quantify sensitivity to sculpting laws across different regimes. We employ a forward modeling framework in which we generate synthetic planetary systems, according to a prescribed sculpting speed and timescale, around the FGK dwarfs studied by the Kepler Mission. Some sculpting scenarios are hypothetically detectable in the Kepler sample, while others can be disfavored from Kepler transit statistics alone. Second, we apply our analysis to reverse engineer the sculpting laws consistent with the true yield from Kepler. We confirm the present-day fraction of host stars containing dynamically cool “systems with tightly packed inner planets” is 4%–13%. A variety of Gyr-timescale sculpting laws successfully predict the transit multiplicity of the Kepler sample, but none of these laws succeed in also producing a detectable trend with transit multiplicity and stellar age. An improvement to measured stellar age precision may help uncover such a sculpting law, but nevertheless reflects limitations in transit multiplicity as an observable. Therefore, other phenomena, apart from Gyr-timescale dynamical sculpting, may be required to explain the Kepler yield.
-
ABSTRACT Consistent with the notion that most Sun-like stars form in multistellar systems, this study explores the impact of a temporarily bound stellar binary companion on the early dynamical evolution of the Solar system. Using N-body simulations, we illustrate how such a companion markedly enhances the trapping of scattered bodies on inner Oort cloud-like orbits, with perihelion distances exceeding $q \gt 40$ au. We further find that the orbital geometry of the Sun-binary system plays a central role in regulating the efficiency of small-body implantation on to high-perihelion orbits, and demonstrate that this process is driven by the von Zeipel–Kozai–Lidov mechanism. Incorporating the transiency of stellar clusters and the eventual Sun-binary pair dissociation due to passing stars, we show how the binary can be stripped away by an approximately solar-mass ejector star, with only a modest impact on the generated inner Oort cloud population. Collectively, our results highlight a previously underappreciated process that could have contributed to the formation of the inner Oort cloud.
-
Abstract Detection of low-frequency (≤1.4 GHz) radio emission from stellar and planetary systems can lead to new insights into stellar activity, extrasolar space weather, and planetary magnetic fields. In this work, we investigate three large field-of-view surveys at 74 MHz, 150 MHz, and 1.4 GHz, as well as a myriad of multiwavelength ancillary data, to search for radio emission from about 2600 stellar objects, including about 800 exoplanetary systems, 600 nearby low-mass stars, and 1200 young stellar objects located in the Taurus and Upper Scorpius star-forming regions. The selected sample encompasses stellar spectral types from B to L and distances between 5 and 300 pc. We report the redetection of five stars at 1.4 GHz, one of which also shows emission at 150 MHz. Four of these are low- and intermediate-mass young stars, and one is the evolved star
α Sco. We also observe radio emission at the position of a young brown dwarf at 1.4 GHz and 150 MHz. However, due to the large astrometric uncertainty of radio observations, a follow-up study at higher angular resolution would be required to confirm whether the observed emission originates from the brown dwarf itself or a background object. Notably, all of the selected radio sources are located in nearby star-forming regions. Furthermore, we use image stacking and statistical methods to derive upper limits on the average quiescent radio luminosity of the families of objects under investigation. These analyses provide observational constraints for large-scale searches for current and ongoing low-frequency radio emissions from stars and planets.