skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asteroseismic Inversions for Internal Sound Speed Profiles of Main-sequence Stars with Radiative Cores
Abstract The theoretical oscillation frequencies of even the best asteroseismic models of solar-like oscillators show significant differences from observed oscillation frequencies. Structure inversions seek to use these frequency differences to infer the underlying differences in stellar structure. While used extensively to study the Sun, structure inversion results for other stars have so far been limited. Applying sound speed inversions to more stars allows us to probe stellar theory over a larger range of conditions, as well as look for overall patterns that may hint at deficits in our current understanding. To that end, we present structure inversion results for 12 main-sequence solar-type stars with masses between 1 and 1.15M. Our inversions are able to infer differences in the isothermal sound speed in the innermost 30% by radius of our target stars. In half of our target stars, the structure of our best-fit model fully agrees with the observations. In the remainder, the inversions reveal significant differences between the sound speed profile of the star and that of the model. We find five stars where the sound speed in the core of our stellar models is too low and one star showing the opposite behavior. For the two stars in which our inversions reveal the most significant differences, we examine whether changing the microphysics of our models improves them and find that changes to nuclear reaction rates or core opacities can reduce, but do not fully resolve, the differences.  more » « less
Award ID(s):
2205026
PAR ID:
10487771
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 198
Size(s):
Article No. 198
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Asteroseismic inferences of main-sequence solar-like oscillators often rely on best-fit models. However, these models cannot fully reproduce the observed mode frequencies, suggesting that the internal structure of the model does not fully match that of the star. Asteroseismic structure inversions provide a way to test the interior of our stellar models. Recently, structure inversion techniques were used to study 12 stars with radiative cores. In this work, we extend that analysis to 43 main-sequence stars with convective cores observed by Kepler to look for differences in the sound speed profiles in the inner 30% of the star by radius. For around half of our stars, the structure inversions show that our models reproduce the internal structure of the star, where the inversions are sensitive, within the observational uncertainties. For the stars where our inversions reveal significant differences, we find cases where our model sound speed is too high and cases where our model sound speed is too low. We use the star with the most significant differences to explore several changes to the physics of our model in an attempt to resolve the inferred differences. These changes include using a different overshoot prescription and including the effects of diffusion, gravitational settling, and radiative levitation. We find that the resulting changes to the model structure are too small to resolve the differences shown in our inversions. 
    more » « less
  2. Abstract Seismic structure inversions have been used to study the solar interior for decades. With the high-precision frequencies obtained using data from the Kepler mission, it has now become possible to study other solar-like oscillators using structure inversions, including both main-sequence and subgiant stars. Subgiant stars are particularly interesting because they exhibit modes of mixed acoustic-buoyancy nature, which provide the opportunity to probe the deeper region of stellar cores. This work examines whether the structure inversion techniques developed for the pure acoustic modes of the Sun and other main-sequence stars are still valid for mixed modes observed in subgiant stars. We construct two grids of models: one of main-sequence stars and one of early subgiant stars. Using these grids, we examine two different parts of the inversion procedure. First, we examine what we call the “kernel errors,” which measure how well the mode sensitivity functions can recover known frequency differences between two models. Second, we test how these kernel errors affect the ability of an inversion to infer known structure differences. On the main sequence, we find that reliable structure inversion results can be obtained across the entire range of masses and large frequency separations we consider. On the subgiant branch, however, the rapid evolution of mixed modes leads to large kernel errors and hence difficulty recovering known structure differences. Our tests show that using mixed modes to infer the structure of subgiant stars reliably will require improvements to current fitting approaches and modifications to the structure inversion techniques. 
    more » « less
  3. null (Ed.)
    Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic diagnostics. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed modes of red-giant stars for the diagnostics of stellar interiors. 
    more » « less
  4. We study the non-radial oscillation modes of strange quark stars with a homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses, we identify the high-frequency l=2 spheroidal (f, p) in Newtonian gravity, using the Cowling approximation. The results are compared to the case of homogeneous compact stars such as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity overestimates the mode frequencies of the strange star, as is the case for neutron stars. 
    more » « less
  5. Context. The TESS space mission has recently demonstrated its great potential to discover new pulsating white dwarf and pre-white dwarf stars, and to detect periodicities with high precision in already known white-dwarf pulsators. Aims. We report the discovery of two new pulsating He-rich atmosphere white dwarfs (DBVs) and present a detailed asteroseismological analysis of three already known DBV stars employing observations collected by the TESS mission along with ground-based data. Methods. We processed and analyzed TESS observations of the three already known DBV stars PG 1351+489 (TIC 471015205), EC 20058−5234 (TIC 101622737), and EC 04207−4748 (TIC 153708460), and the two new DBV pulsators WDJ152738.4−50207.4 (TIC 150808542) and WD 1708−871 (TIC 451533898), whose variability is reported for the first time in this paper. We also carried out a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models built considering the complete evolution of the progenitor stars. We constrained the stellar mass of three of these target stars by means of the observed period spacing, and derived a representative asteroseismological model using the individual periods, when possible. Results. We extracted frequencies from the TESS light curves of these DBV stars using a standard pre-whitening procedure to derive the potential pulsation frequencies. All the oscillation frequencies that we found are associated with g -mode pulsations with periods spanning from ∼190 s to ∼936 s. We find hints of rotation from frequency triplets in some of the targets, including the two new DBVs. For three targets, we find constant period spacings, which allowed us to infer their stellar masses and constrain the harmonic degree ℓ of the modes. We also performed period-to-period fit analyses and found an asteroseismological model for three targets, with stellar masses generally compatible with the spectroscopic masses. Obtaining seismological models allowed us to estimate the seismological distances and compare them with the precise astrometric distances measured with Gaia . We find a good agreement between the seismic and the astrometric distances for three stars (PG 1351+489, EC 20058-5234, and WD 1708-871); although, for the other two stars (EC 04207-4748 and WD J152738.4-50207), the discrepancies are substantial. Conclusions. The high-quality data from the TESS mission continue to provide important clues which can be used to help determine the internal structure of pulsating pre-white dwarf and white dwarf stars through the tools of asteroseismology. 
    more » « less