Abstract MotivationThe exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing timeseries Hi-C data. ResultIn this work, we designed a novel framework named HiCForecast, adopting a dynamic voxel flow algorithm to forecast future spatiotemporal Hi-C data. We evaluated how well our method generalizes forecasting data across different species and systems, ensuring performance in homogeneous, heterogeneous, and general contexts. Using both computational and biological evaluation metrics, our results show that HiCForecast outperforms the current state-of-the-art algorithm, emerging as an efficient and powerful tool for forecasting future spatiotemporal Hi-C datasets. Availability and implementationHiCForecast is publicly available at https://github.com/OluwadareLab/HiCForecast.
more »
« less
HiCube: interactive visualization of multiscale and multimodal Hi-C and 3D genome data
Abstract SummaryHiCube is a lightweight web application for interactive visualization and exploration of diverse types of genomics data at multiscale resolutions. Especially, HiCube displays synchronized views of Hi-C contact maps and 3D genome structures with user-friendly annotation and configuration tools, thereby facilitating the study of 3D genome organization and function. Availability and implementationHiCube is implemented in Javascript and can be installed via NPM. The source code is freely available at GitHub (https://github.com/wmalab/HiCube).
more »
« less
- Award ID(s):
- 1751317
- PAR ID:
- 10405818
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 39
- Issue:
- 4
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationRecent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. ResultsWe have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp). Availability and implementationA Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationMillions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to develop computational methods to accurately predict protein function to fill the gap. Even though many methods have been developed to use protein sequences as input to predict function, much fewer methods leverage protein structures in protein function prediction because there was lack of accurate protein structures for most proteins until recently. ResultsWe developed TransFun—a method using a transformer-based protein language model and 3D-equivariant graph neural networks to distill information from both protein sequences and structures to predict protein function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM) via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms several state-of-the-art methods, indicating that the language model and 3D-equivariant graph neural networks are effective methods to leverage protein sequences and structures to improve protein function prediction. Combining TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy. Availability and implementationThe source code of TransFun is available at https://github.com/jianlin-cheng/TransFun.more » « less
-
Abstract MotivationSingle-cell Hi-C (scHi-C) data provide critical insights into chromatin interactions at individual cell levels, uncovering unique genomic 3D structures. However, scHi-C datasets are characterized by sparsity and noise, complicating efforts to accurately reconstruct high-resolution chromosomal structures. In this study, we present ScUnicorn, a novel blind super-resolution framework for scHi-C data enhancement. ScUnicorn uses an iterative degradation kernel optimization process, unlike traditional super-resolution approaches, which rely on downsampling, predefined degradation ratios, or constant assumptions about the input data to reconstruct high-resolution interaction matrices. Hence, our approach more reliably preserves critical biological patterns and minimizes noise. Additionally, we propose 3DUnicorn, a maximum likelihood algorithm that leverages the enhanced scHi-C data to infer precise 3D chromosomal structures. ResultsOur evaluation demonstrates that ScUnicorn achieves superior performance over the state-of-the-art methods in terms of Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and GenomeDisco scores. Moreover, 3DUnicorn’s reconstructed structures align closely with experimental 3D-FISH data, underscoring its biological relevance. Together, ScUnicorn and 3DUnicorn provide a robust framework for advancing genomic research by enhancing scHi-C data fidelity and enabling accurate 3D genome structure reconstruction. Availability and implementationUnicorn implementation is publicly accessible at https://github.com/OluwadareLab/Unicorn.more » « less
-
Abstract BackgroundGenomic safe harbors are regions of the genome that can maintain transgene expression without disrupting the function of host cells. Genomic safe harbors play an increasingly important role in improving the efficiency and safety of genome engineering. However, limited safe harbors have been identified. ResultsHere, we develop a framework to facilitate searches for genomic safe harbors by integrating information from polymorphic mobile element insertions that naturally occur in human populations, epigenomic signatures, and 3D chromatin organization. By applying our framework to polymorphic mobile element insertions identified in the 1000 Genomes project and the Genotype-Tissue Expression (GTEx) project, we identify 19 candidate safe harbors in blood cells and 5 in brain cells. For three candidate sites in blood, we demonstrate the stable expression of transgene without disrupting nearby genes in host erythroid cells. We also develop a computer program, Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper), for knowledge-based tissue-specific genomic safe harbor selection. ConclusionsOur study provides a new knowledge-based framework to identify tissue-specific genomic safe harbors. In combination with the fast-growing genome engineering technologies, our approach has the potential to improve the overall safety and efficiency of gene and cell-based therapy in the near future.more » « less
An official website of the United States government
