This paper studies the Heavy Traffic (HT) joint distribution of queue lengths in an Input-queued switch (IQ switch) operating under the MaxWeight scheduling policy. IQ switchserve as representative of SPNs that do not satisfy the socalled Complete Resource Pooling (CRP) condition, and consequently exhibit a multidimensional State Space Collapse (SSC). Except in special cases, only mean queue lengths of such non-CRP systems is known in the literature. In this paper, we develop the Transform method to study the joint distribution of queue lengths in non-CRP systems. The key challenge is in solving an implicit functional equation involving the Laplace transform of the HT limiting distribution. For the general n x n IQ switch that has n2 queues, under a conjecture on uniqueness of the solution of the functional equation, we obtain an exact joint distribution of the HT limiting queue-lengths in terms of a non-linear combination of 2n iid exponentials.
more »
« less
Logarithmic heavy traffic error bounds in generalized switch and load balancing systems
Abstract Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be $$\Theta({1}/{\epsilon})$$ , where $$\epsilon$$ is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within $$\textrm{O}({\log}({1}/{\epsilon}))$$ of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within $$\textrm{O}({\log}({1}/{\epsilon}))$$ of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm.
more »
« less
- PAR ID:
- 10406004
- Date Published:
- Journal Name:
- Journal of Applied Probability
- Volume:
- 59
- Issue:
- 3
- ISSN:
- 0021-9002
- Page Range / eLocation ID:
- 652 to 669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper studies the input-queued switch operating under the MaxWeight algorithm when the arrivals are according to a Markovian process. We exactly characterize the heavy-traffic scaled mean sum queue length in the heavy-traffic limit, and show that it is within a factor of less than 2 from a universal lower bound. Moreover, we obtain lower and upper bounds that are applicable in all traffic regimes and become tight in the heavy-traffic regime. We obtain these results by generalizing the drift method recently developed for the case of independent and identically distributed arrivals to the case of Markovian arrivals. We illustrate this generalization by first obtaining the heavy-traffic mean queue length and its distribution in a single-server queue under Markovian arrivals and then applying it to the case of an input-queued switch. The key idea is to exploit the geometric mixing of finite-state Markov chains, and to work with a time horizon that is chosen so that the error due to mixing depends on the heavy-traffic parameter.more » « less
-
Abstract We present a new elementary algorithm that takes $$ \textrm{time} \ \ O_\epsilon \left( x^{\frac{3}{5}} (\log x)^{\frac{8}{5}+\epsilon } \right) \ \ \textrm{and} \ \textrm{space} \ \ O\left( x^{\frac{3}{10}} (\log x)^{\frac{13}{10}} \right) $$ time O ϵ x 3 5 ( log x ) 8 5 + ϵ and space O x 3 10 ( log x ) 13 10 (measured bitwise) for computing $$M(x) = \sum _{n \le x} \mu (n),$$ M ( x ) = ∑ n ≤ x μ ( n ) , where $$\mu (n)$$ μ ( n ) is the Möbius function. This is the first improvement in the exponent of x for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to $$O(x^{1/5} (\log x)^{5/3})$$ O ( x 1 / 5 ( log x ) 5 / 3 ) by the use of (Helfgott in: Math Comput 89:333–350, 2020), at the cost of letting time rise to the order of $$x^{3/5} (\log x)^2 \log \log x$$ x 3 / 5 ( log x ) 2 log log x .more » « less
-
In general, obtaining the exact steady-state distribution of queue lengths is not feasible. Therefore, we focus on establishing bounds for the tail probabilities of queue lengths. We examine queueing systems under Heavy Traffic (HT) conditions and provide exponentially decaying bounds for the probability P(∈q > x), where ∈ is the HT parameter denoting how far the load is from the maximum allowed load. Our bounds are not limited to asymptotic cases and are applicable even for finite values of ∈, and they get sharper as ∈ - 0. Consequently, we derive non-asymptotic convergence rates for the tail probabilities. Furthermore, our results offer bounds on the exponential rate of decay of the tail, given by -1/2 log P(∈q > x) for any finite value of x. These can be interpreted as non-asymptotic versions of Large Deviation (LD) results. To obtain our results, we use an exponential Lyapunov function to bind the moment-generating function of queue lengths and apply Markov's inequality. We demonstrate our approach by presenting tail bounds for a continuous time Join-the-shortest queue (JSQ) system.more » « less
-
The matrix completion problem seeks to recover a $$d\times d$$ ground truth matrix of low rank $$r\ll d$$ from observations of its individual elements. Real-world matrix completion is often a huge-scale optimization problem, with $$d$$ so large that even the simplest full-dimension vector operations with $O(d)$ time complexity become prohibitively expensive. Stochastic gradient descent (SGD) is one of the few algorithms capable of solving matrix completion on a huge scale, and can also naturally handle streaming data over an evolving ground truth. Unfortunately, SGD experiences a dramatic slow-down when the underlying ground truth is ill-conditioned; it requires at least $$O(\kappa\log(1/\epsilon))$$ iterations to get $$\epsilon$$-close to ground truth matrix with condition number $$\kappa$$. In this paper, we propose a preconditioned version of SGD that preserves all the favorable practical qualities of SGD for huge-scale online optimization while also making it agnostic to $$\kappa$$. For a symmetric ground truth and the Root Mean Square Error (RMSE) loss, we prove that the preconditioned SGD converges to $$\epsilon$$-accuracy in $$O(\log(1/\epsilon))$$ iterations, with a rapid linear convergence rate as if the ground truth were perfectly conditioned with $$\kappa=1$$. In our numerical experiments, we observe a similar acceleration for ill-conditioned matrix completion under the 1-bit cross-entropy loss, as well as pairwise losses such as the Bayesian Personalized Ranking (BPR) loss.more » « less
An official website of the United States government

