Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these multiscale relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, the integration and scalability of these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ~20 nm length scale, with robust statistical sampling. kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing truly mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales.
more »
« less
Bypassing backmapping: Coarse-grained electronic property distributions using heteroscedastic Gaussian processes
We employ deep kernel learning electronic coarse-graining (DKL-ECG) with approximate Gaussian processes as a flexible and scalable framework for learning heteroscedastic electronic property distributions as a smooth function of coarse-grained (CG) configuration. The appropriateness of the Gaussian prior on predictive CG property distributions is justified as a function of CG model resolution by examining the statistics of target distributions. The certainties of predictive CG distributions are shown to be limited by CG model resolution with DKL-ECG predictive noise converging to the intrinsic physical noise induced by the CG mapping operator for multiple chemistries. Further analysis of the resolution dependence of learned CG property distributions allows for the identification of CG mapping operators that capture CG degrees of freedom with strong electron–phonon coupling. We further demonstrate the ability to construct the exact quantum chemical valence electronic density of states (EDOS), including behavior in the tails of the EDOS, from an entirely CG model by combining iterative Boltzmann inversion and DKL-ECG. DKL-ECG provides a means of learning CG distributions of all-atom properties that are traditionally “lost” in CG model development, introducing a promising methodological alternative to backmapping algorithms commonly employed to recover all-atom property distributions from CG simulations.
more »
« less
- Award ID(s):
- 2154916
- PAR ID:
- 10406079
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 17
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 174102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bottom-up methods for coarse-grained (CG) molecular modeling are critically needed to establish rigorous links between atomistic reference data and reduced molecular representations. For a target molecule, the ideal reduced CG representation is a function of both the conformational ensemble of the system and the target physical observable(s) to be reproduced at the CG resolution. However, there is an absence of algorithms for selecting CG representations of molecules from which complex properties, including molecular electronic structure, can be accurately modeled. We introduce continuously gated message passing (CGMP), a graph neural network (GNN) method for atomically decomposing molecular electronic structure sampled over conformational ensembles. CGMP integrates 3D-invariant GNNs and a novel gated message passing system to continuously reduce the atomic degrees of freedom accessible for electronic predictions, resulting in a one-shot importance ranking of atoms contributing to a target molecular property. Moreover, CGMP provides the first approach by which to quantify the degeneracy of “good” CG representations conditioned on specific prediction targets, facilitating the development of more transferable CG representations. We further show how CGMP can be used to highlight multiatom correlations, illuminating a path to developing CG electronic Hamiltonians in terms of interpretable collective variables for arbitrarily complex molecules.more » « less
-
By averaging over atomic details, coarse-grained (CG) models provide profound computational and conceptual advantages for studying soft materials. In particular, bottom-up approaches develop CG models based upon information obtained from atomically detailed models. At least in principle, a bottom-up model can reproduce all the properties of an atomically detailed model that are observable at the resolution of the CG model. Historically, bottom-up approaches have accurately modeled the structure of liquids, polymers, and other amorphous soft materials, but have provided lower structural fidelity for more complex biomolecular systems. Moreover, they have also been plagued by unpredictable transferability and a poor description of thermodynamic properties. Fortunately, recent studies have reported dramatic advances in addressing these prior limitations. This Perspective reviews this remarkable progress, while focusing on its foundation in the basic theory of coarse-graining. In particular, we describe recent insights and advances for treating the CG mapping, for modeling many-body interactions, for addressing the state-point dependence of effective potentials, and even for reproducing atomic observables that are beyond the resolution of the CG model. We also outline outstanding challenges and promising directions in the field. We anticipate that the synthesis of rigorous theory and modern computational tools will result in practical bottom-up methods that not only are accurate and transferable but also provide predictive insight for complex systems.more » « less
-
null (Ed.)The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called Deep Supervised Graph Partitioning Model (DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1180 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation.more » « less
-
Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a “phase transition” qualitatively distinguishes good and bad representations.more » « less
An official website of the United States government

