- Award ID(s):
- 1901585
- PAR ID:
- 10406094
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 1063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract. The lower-order moments of the drop size distribution (DSD) have generally been considered difficult to retrieve accurately from polarimetric radar data because these data are related to higher-order moments. For example, the 4.6th moment is associated with a specific differential phase and the 6th moment with reflectivity and ratio of high-order moments with differential reflectivity. Thus, conventionally, the emphasis has been to estimate rain rate (3.67th moment) or parameters of the exponential or gamma distribution for the DSD. Many double-moment “bulk” microphysical schemes predict the total number concentration (the 0th moment of the DSD, or M0) and the mixing ratio (or equivalently, the 3rd moment M3). Thus, it is difficult to compare the model outputs directly with polarimetric radar observations or, given the model outputs, forward model the radar observables. This article describes the use of double-moment normalization of DSDs and the resulting stable intrinsic shape that can be fitted by the generalized gamma (G-G) distribution. The two reference moments are M3 and M6, which are shown to be retrievable using the X-band radar reflectivity, differential reflectivity, and specific attenuation (from the iterative correction of measured reflectivity Zh using the total Φdp constraint, i.e., the iterative ZPHI method). Along with the climatological shape parameters of the G-G fit to the scaled/normalized DSDs, the lower-order moments are then retrieved more accurately than possible hitherto. The importance of measuring the complete DSD from 0.1 mm onwards is emphasized using, in our case, an optical array probe with 50 µm resolution collocated with a two-dimensional video disdrometer with about 170 µm resolution. This avoids small drop truncation and hence the accurate calculation of lower-order moments. A case study of a complex multi-cell storm which traversed an instrumented site near the CSU-CHILL radar is described for which the moments were retrieved from radar and compared with directly computed moments from the complete spectrum measurements using the aforementioned two disdrometers. Our detailed validation analysis of the radar-retrieved moments showed relative bias of the moments M0 through M2 was <15 % in magnitude, with Pearson’s correlation coefficient >0.9. Both radar measurement and parameterization errors were estimated rigorously. We show that the temporal variation of the radar-retrieved mass-weighted mean diameter with M0 resulted in coherent “time tracks” that can potentially lead to studies of precipitation evolution that have not been possible so far.more » « less
-
Commonly used disdrometers tend not to accurately measure concentrations of very small drops in the raindrop size distribution (DSD), either through truncation of the DSD at the small-drop end or because of large uncertainties on these measurements. Recent studies have shown that, as a result of these inaccuracies, many if not most ground-based disdrometers do not capture the “drizzle mode” of precipitation, which consists of large concentrations of small drops and is often separated from the main part of the DSD by a shoulder region. We present a technique for reconstructing the drizzle mode of the DSD from “incomplete” measurements in which the drizzle mode is not present. Two statistical moments of the DSD that are well measured by standard disdrometers are identified and used with a double-moment normalized DSD function that describes the DSD shape. A model representing the double-moment normalized DSD is trained using measurements of DSD spectra that contain the drizzle mode obtained using collocated Meteorological Particle Spectrometer and 2D video disdrometer instruments. The best-fitting model is shown to depend on temporal resolution. The result is a method to estimate, from truncated or uncertain measurements of the DSD, a more complete DSD that includes the drizzle mode. The technique reduces bias on low-order moments of the DSD that influence important bulk variables such as the total drop concentration and mass-weighted mean drop diameter. The reconstruction is flexible and often produces better rain-rate estimations than a previous DSD correction routine, particularly for light rain.
-
Lupo, Anthony (Ed.)We examine several different features of DSDs based on data and observations from two mid-latitude coastal locations: (a) the Delmarva peninsula, USA, and (b) Incheon, South Korea. In each case, the full DSD spectra were obtained from two collocated disdrometers. Two events from location (a) and one event from location (b) are presented. For (a), observations and retrievals from NASA’s S-band polarimetric radar are included in the analyses as well as retrieved DSD parameters from the dual-wavelength precipitation radar onboard the Global Precipitation Measurement satellite. For (b), the disdrometer-based DSD data are compared with measurements from another sensor. Our main aim is to examine the underlying shape of the DSDs and their representation by the generalized gamma model.more » « less
-
Two case studies of marine stratocumulus (one nocturnal and drizzling, the other daytime and nonprecipitating) are simulated by the UCLA large-eddy simulation model with bin microphysics for comparison with aircraft in situ observations. A high-bin-resolution variant of the microphysics is implemented for closer comparison with cloud drop size distribution (DSD) observations and a turbulent collision–coalescence kernel to evaluate the role of turbulence on drizzle formation. Simulations agree well with observational constraints, reproducing observed thermodynamic profiles (i.e., liquid water potential temperature and total moisture mixing ratio) as well as liquid water path. Cloud drop number concentration and liquid water content profiles also agree well insofar as the thermodynamic profiles match observations, but there are significant differences in DSD shape among simulations that cause discrepancies in higher-order moments such as sedimentation flux, especially as a function of bin resolution. Counterintuitively, high-bin-resolution simulations produce broader DSDs than standard resolution for both cases. Examination of several metrics of DSD width and percentile drop sizes shows that various discrepancies of model output with respect to the observations can be attributed to specific microphysical processes: condensation spuriously creates DSDs that are too wide as measured by standard deviation, which leads to collisional production of too many large drops. The turbulent kernel has the greatest impact on the low-bin-resolution simulation of the drizzling case, which exhibits greater surface precipitation accumulation and broader DSDs than the control (quiescent kernel) simulations. Turbulence effects on precipitation formation cannot be definitively evaluated using bin microphysics until the artificial condensation broadening issue has been addressed.
-
Abstract Polarimetric coastal radar data are used to compare the rainfall characteristics of Hurricanes Harvey (2017) and Florence (2018). Intense rainfall was an infrequent yet important contributor to the total rainfall in Harvey, but its relative contribution varied spatially. The total rainfall over land maximized near the coast over Beaumont, TX, due to intense convection resulting from prolonged onshore flow downshear from the circulation center. Overall, polarimetric radar observations in Harvey show a dominance of high concentrations of small‐to‐medium drops, consistent with prior tropical cyclone studies. The microphysical characteristics were spatially and temporally inhomogeneous however, with larger drops more frequent on 27 August and higher number concentrations more frequent on 28 and 30 August. The polarimetric variables and raindrop characteristics observed during Florence share broad similarities to Harvey, but had reduced variability, fewer observations of stronger reflectivity and differential reflectivity, and a lower frequency of high number concentrations and medium‐sized drops. The radar data indicate Florence had reduced coverage of stronger convection compared to Harvey. We hypothesize that differences in storm motion, intensity decay rates, and vertical wind shear produce the distinct precipitation structures and microphysical differences seen in Harvey and Florence.