skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcriptomics of a Greenlandic Snailfish Reveals Exceptionally High Expression of Antifreeze Protein Transcripts
Polar fishes have evolved antifreeze proteins (AFPs) that allow them to survive in subzero temperatures. We performed deep transcriptomic sequencing on a postlarval/juvenile variegated snailfish, Liparis gibbus (Actinopterygii: Scorpaeniformes: Cottoidei: Liparidae), living in an iceberg habitat (−2°C) in Eastern Greenland and report detection of highly expressed transcripts that code for putative AFPs from 2 gene families, Type I and LS-12-like proteins (putative Type IV AFPs). The transcripts encoding both proteins have expression levels among the top <1% of expressed genes in the fish. The Type I AFP sequence is different from a reported Type I AFP from the same species, possibly expressed from a different genetic locus. While prior findings from related adult sculpins suggest that LS-12-like/Type IV AFPs may not have a role in antifreeze protection, our finding of very high relative gene expression of the LS-12-like gene suggests that highly active transcription of the gene is important to the fish in the iceberg habitat and raises the possibility that weak or combinatorial antifreeze activity could be beneficial. These findings highlight the physiological importance of antifreeze proteins to the survival of fishes living in polar habitats.  more » « less
Award ID(s):
1652731
PAR ID:
10406216
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Evolutionary Bioinformatics
Volume:
18
ISSN:
1176-9343
Page Range / eLocation ID:
117693432211183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout,Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand howO. amberensishas adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity inO. amberensisand other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence ofafpIIIsequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution. 
    more » « less
  2. Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic β-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary β-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation. 
    more » « less
  3. Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3’s large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution. 
    more » « less
  4. Aggregations of freshwater mussels create patches that can benefit other organisms through direct habitat alterations or indirect stimulation of trophic resources via nutrient excretion and biodeposition. Spent shells and the shells of living mussels add complexity to benthic environments by providing shelter from predators and increasing habitat heterogeneity. Combined, these factors can increase primary productivity and macroinvertebrate abundance in patches where mussel biomass is high, providing valuable subsidies for some fishes and influencing their distributions. We performed a 12-wk field experiment to test whether fish distributions within mussel beds were most influenced by the presence of subsidies associated with live mussels or the biogenic habitat of shells. We used remote underwater video recordings to quantify fish occurrences at fifty 0.25-m2 experimental enclosures stocked with either live mussels (2-species assemblages), sham mussels (shells filled with sand), or sediment only. The biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by treatment. We detected more fish in live mussel and sham treatments than in the sediment-only treatment but found no difference between live mussel and sham treatments. Thus, habitat provided by mussel shells may be the primary benefit to fishes that co-occur with mussels. Increased spatiotemporal overlap between fish and mussels might strengthen ecosystem effects, such as nutrient cycling, and the role of both fish and mussels in freshwater ecosystems 
    more » « less
  5. Amon, Cristina (Ed.)
    Abstract Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability. 
    more » « less