skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributed Optimal Resource Allocation with Time-Varying Quadratic Cost Functions and Resources over Switching Agents
This paper proposes a distributed solution for an optimal resource allocation problem with a time-varying cost function and time-varying demand. The objective is to minimize a global cost, which is the summation of local quadratic time-varying cost functions, by allocating time-varying resources. A reformulation of the original problem is developed and is solved in a distributed manner using only local interactions over an undirected connected graph. In the proposed algorithm, the local state trajectories converge to a bounded neighborhood of the optimal trajectory. This bound is characterized in terms the parameters of the cost and topology properties. We also show that despite the tracking error, the trajectories are feasible at all times, meaning that the resource allocation equality constraint is met at every execution time. Our algorithm also considers the possibility of some generators going out of production from time to time and adjusts the solution so that the remaining generators can meet the demands in an optimal manner. Numerical examples demonstrate our results.  more » « less
Award ID(s):
1653838
PAR ID:
10406241
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 European Control Conference (ECC)
Page Range / eLocation ID:
441 to 446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms. 
    more » « less
  2. A critical factor for expanding the adoption of networked solutions is ensuring local data privacy of in-network agents implementing a distributed algorithm. In this paper, we consider privacy preservation in the distributed optimization problem in the sense that local cost parameters should not be revealed. Current approaches to privacy preservation normally propose methods that sacrifice exact convergence or increase communication overhead. We propose PrivOpt, an intrinsically private distributed optimization algorithm that converges exponentially fast without any convergence error or using extra communication channels. We show that when the number of the parameters of the local cost is greater than the dimension of the decision variable of the problem, no malicious agent, even if it has access to all transmitted-in and -out messages in the network, can obtain local cost parameters of other agents. As an application study, we show how our proposed PrivOpt algorithm can be used to solve an optimal resource allocation problem with the guarantees that the local cost parameters of all the agents stay private. 
    more » « less
  3. This paper proposes a novel solution for the distributed unconstrained optimization problem where the total cost is the summation of time-varying local cost functions of a group networked agents. The objective is to track the optimal trajectory that minimizes the total cost at each time instant. Our approach consists of a two-stage dynamics, where the first one samples the first and second derivatives of the local costs periodically to construct an estimate of the descent direction towards the optimal trajectory, and the second one uses this estimate and a consensus term to drive local states towards the time-varying solution while reaching consensus. The first part is carried out by a weighted average consensus algorithm in the discrete-time framework and the second part is performed with a continuous-time dynamics. Using the Lyapunov stability analysis, an upper bound on the gradient of the total cost is obtained which is asymptotically reached. This bound is characterized by the properties of the local costs. To demonstrate the performance of the proposed method, a numerical example is conducted that studies tuning the algorithm’s parameters and their effects on the convergence of local states to the optimal trajectory. 
    more » « less
  4. Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms. 
    more » « less
  5. Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery. 
    more » « less