skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Cache Allocation under Network-Wide Capacity Constraint
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.  more » « less
Award ID(s):
1718355
PAR ID:
10107988
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 International Conference on Computing, Networking and Communications (ICNC)
Page Range / eLocation ID:
816 to 820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  2. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  3. While society continues to be transformed by insights from processing big data, the increasing rate at which this data is gathered is making processing in private clusters obsolete. A vast amount of big data already resides in the cloud, and cloud infrastructures provide a scalable platform for both the computational and I/O needs of big data processing applications. Virtualization is used as a base technology in the cloud; however, existing virtual machine placement techniques do not consider data replication and I/O bottlenecks of the infrastructure, yielding sub-optimal data retrieval times. This paper targets efficient big data processing in the cloud and proposes novel virtual machine placement techniques, which minimize data retrieval time by considering data replication, storage performance, and network bandwidth. We first present an integer-programming based optimal virtual machine placement algorithm and then propose two low cost data- and energy-aware virtual machine placement heuristics. Our proposed heuristics are compared with optimal and existing algorithms through extensive evaluation. Experimental results provide strong indications for the superiority of our proposed solutions in both performance and energy, and clearly outline the importance of big data aware virtual machine placement for efficient processing of large datasets in the cloud. 
    more » « less
  4. Wireless edge networks are promising to provide better video streaming services to mobile users by provisioning computing and storage resources at the edge of wireless network. However, due to the diversity of user interests, user devices, video versions or resolutions, cache sizes, network conditions, etc., it is challenging to decide where to place the video contents, and which cache and video version a mobile user device should select. In this paper, we study the joint optimization of cache-version selection and content placement for adaptive video streaming in wireless edge networks. We propose practical distributed algorithms that operate at each user device and each network cache to maximize the overall network utility. In addition to proving the optimality of our algorithms, we implement our algorithms as well as several baseline algorithms on ndnSIM, an ns-3 based Named Data Networking simulator. Simulation evaluations demonstrate that our algorithms significantly outperform conventional heuristic solutions. 
    more » « less
  5. Virtual machine (VM) replication is an effective technique in cloud data centers to achieve fault-tolerance, load-balance, and quick-responsiveness to user requests. In this paper we study a new fault-tolerant VM placement problem referred to as FT-VMP. Given that different VM has different fault-tolerance requirement (i.e., different VM requires different number of replica copies) and compatibility requirement (i.e., some VMs and their replicas cannot be placed into some physical machines (PMs) due to software or platform incompatibility), FT-VMP studies how to place VM replica copies inside cloud data centers in order to minimize the number of PMs storing VM replicas, under the constraints that i) for fault-tolerant purpose, replica copies of the same VM cannot be placed inside the same PM and ii) each PM has a limited amount of storage capacity. We first prove that FT-VMP is NP-hard. We then design an integer linear programming (ILP)-based algorithm to solve it optimally. As ILP takes time to compute thus is not suitable for large scale cloud data centers, we design a suite of efficient and scalable heuristic fault-tolerant VM placement algorithms. We show that a) ILP-based algorithm outperforms the state-of-the-art VM replica placement in a wide range of network dynamics and b) that all our fault-tolerant VM placement algorithms are able to turn off significant number of PMs to save energy in cloud data centers. In particular, we show that our algorithms can consolidate (i.e., turn off) around 100 PMs in a small data center of 256 PMs and 700 PMs in a large data center of 1028PMs. 
    more » « less