skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Cache Allocation under Network-Wide Capacity Constraint
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.  more » « less
Award ID(s):
1718355
PAR ID:
10107988
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 International Conference on Computing, Networking and Communications (ICNC)
Page Range / eLocation ID:
816 to 820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  2. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  3. We propose a decentralized spatial soft-core cache placement (SSCC) policy for wireless networks. SSCC yields a spatially balanced sampling via negative dependence across caches, and can be tuned to satisfy cache size constraints with high probability. Given a desired cache hit probability, we compare the 95% confidence intervals of the required cache sizes for independent placement, hard-core placement and SSCC policies. We demonstrate that in terms of the required cache storage size, SSCC can provide up to more than 180% and 100% gains with respect to the independent and hard-core placement policies, respectively. SSCC can be used to enable proximity- based applications such as device-to-device communications and peer-to-peer networking as it promotes the item diversity and reciprocation among the nodes. 
    more » « less
  4. Wireless edge networks are promising to provide better video streaming services to mobile users by provisioning computing and storage resources at the edge of wireless network. However, due to the diversity of user interests, user devices, video versions or resolutions, cache sizes, network conditions, etc., it is challenging to decide where to place the video contents, and which cache and video version a mobile user device should select. In this paper, we study the joint optimization of cache-version selection and content placement for adaptive video streaming in wireless edge networks. We propose practical distributed algorithms that operate at each user device and each network cache to maximize the overall network utility. In addition to proving the optimality of our algorithms, we implement our algorithms as well as several baseline algorithms on ndnSIM, an ns-3 based Named Data Networking simulator. Simulation evaluations demonstrate that our algorithms significantly outperform conventional heuristic solutions. 
    more » « less
  5. The Internet is composed of many interconnected, interoperating networks. With the recent advances in Future Internet design, multiple new network architectures, especially Information-Centric Networks (ICN) have emerged. Given the ubiquity of networks based on the Internet Protocol (IP), it is likely that we will have a number of different interconnecting network domains with different architectures, including ICNs. Their interoperability is important, but at the same time difficult to prove. A formal tool can be helpful for such analysis. ICNs have a number of unique characteristics, warranting formal analysis, establishing properties that go beyond, and are different from, what have been used in the state-of-the-art because ICN operates at the level of content names rather than node addresses. We need to focus on node-to-content reachability, rather than node-to-node reachability. In this paper, we present a formal approach to model and analyze information-centric interoperability (ICI). We use Alloy Analyzer’s model finding approach to verify properties expressed as invariants for information-centric services (both pull and push-based models) including content reachability and returnability. We extend our use of Alloy to model counting, to quantitatively analyze failure and mobility properties. We present a formally-verified ICI framework that allows for seamless interoperation among a multitude of network architectures. We also report on the impact of domain types, routing policies, and binding techniques on the probability of content reachability and returnability, under failures and mobility. 
    more » « less