skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Viscosity Measurement of Gaseous and Supercritical Fluids as a Dielectric Medium
Supercritical fluids (SCFs) are being investigated as a dielectric medium for their low viscosity, high dielectric strength, high heat transfer capability, low cost, and environmental friendliness. This paper introduces a straightforward, cost-effective, and commercially available sensor to measure SCF viscosity for the characterization of the dielectric medium. Quadratic and cubic fitting between the sensor current output and viscosity of He, H2, CO2, SF6, and N2 were made in the ambient lab environment. Experimental temperatures range from 19.3°C to 22.0°C and fluid pressure from 0.1 MPa-1.5 MPa. This manuscript introduces preliminary data for a methodology to correlate SCF viscosity to the output signal of a commercially available sensor. This will enable viscosity measurement of mixtures of dielectric fluids.  more » « less
Award ID(s):
1944014
PAR ID:
10406576
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Conference on Electrical Insulation and Dielectric Phenomena
Page Range / eLocation ID:
635 to 638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercritical fluids (SCFs) have been recently considered to be used as insulating media due to properties that show exceptional dielectric strength, high heat transfer capability, and low viscosity. This paper reports the result of breakdown experiments on carbon dioxide (CO2) from gaseous to supercritical state. Experiments are performed under the isothermal condition of 310 K (37°C). The dielectric strength test is conducted in a 0.1 mm gap under uniform dc electric field. To interpret the result, a theoretical model that combines the thermodynamic calculation and existing data from the structure analysis by small angle x-ray scattering is developed. Our experiments suggest that the dielectric behavior of supercritical CO2 shows a discontinuity of the dielectric strength near the critical point. This phenomenon can be well explained by the theoretical model, which calculates the molecular cluster size and considers the local fluid structure. 
    more » « less
  2. Abstract In this work, a scalable and rapid process is developed for creating a low‐cost humidity sensor for wireless monitoring of moisture levels within packaged goods. The sensor comprises a moisture‐sensitive interdigitated capacitor connected to a planar spiral coil, forming an LC circuit whose resonant frequency is a function of environmental humidity. The sensor is fabricated on a commercially available metallized parchment paper through selective laser ablation of the laminated aluminum (Al) film on the parchment paper substrate. The laser ablation process provides a unique one‐step patterning of the conductive Al layer on the paper while simultaneously creating high surface area Al2O3nanoparticles within the laser‐ablated regions. The intrinsic humidity‐responsive characteristics of the laser‐induced Al2O3nanostructures provide the wireless sensor with a tenfold higher sensitivity to humidity than a similar LC resonant sensor prepared by conventional photolithography‐based processes on FR‐4 substrates. The frequency change of the sensor is observed to be a linear function within the range of 0−85% RH, providing an average sensitivity of −87 kHz RH−1with good repeatability and stable performance. Furthermore, the employment of scalable laser fabrication processes using commercially available inexpensive materials renders these technologies viable for roll‐to‐roll manufacturing of low‐cost wireless sensors for smart packaging applications. 
    more » « less
  3. Abstract Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) “antennas” labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface‐enhanced Raman spectroscopy (SERS). The peptide‐conjugated GNS‐SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de‐identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low‐cost PRADA will have tremendous translational impact and be amenable to resource‐limited settings for accurate treatment planning in patients. 
    more » « less
  4. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  5. Abstract Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al92Ti2Fe2Co2Ni2is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al9Co2type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing. 
    more » « less