To understand the dynamics of quantum many-body systems, it is essential to study excited eigenstates. While tensor network states have become a standard tool for computing ground states in computational many-body physics, obtaining accurate excited eigenstates remains a significant challenge. In this work, we develop an approach that combines the inexact Lanczos method, which is designed for efficient computations of excited states, with tree tensor network states (TTNSs). We demonstrate our approach by computing excited vibrational states for three challenging problems: (1) 122 states in two different energy intervals of acetonitrile (12-dimensional), (2) Fermi resonance states of the fluxional Zundel ion (15-dimensional), and (3) selected excited states of the fluxional and very correlated Eigen ion (33-dimensional). The proposed TTNS inexact Lanczos method is directly applicable to other quantum many-body systems.
more »
« less
Generalization of the tensor product selected CI method for molecular excited states
In a recent paper (JCTC, 16, 6098 (2020)), we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces, called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space. By folding correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse, creating a more compact selected CI expansion. While we demonstrated that this approach can improve accuracy for a variety of systems, there is even greater potential for applications to excited states, particularly those which have some excitonic character. In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate excitation energies for several excited states of various polycyclic aromatic hydrocarbons (PAH) with respect to the extrapolated result (i.e. near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 biexcitonic states.
more »
« less
- Award ID(s):
- 1752612
- PAR ID:
- 10406649
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- arXiv:2303.02232
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The molecules 1,4-cyclohexadiene (unconjugated 1,4-CHD) and 1,3-cyclohexadiene (conjugated 1,3-CHD) both have two double bonds, but these bonds interact in different ways. These molecules have long served as examples of through-bond and through-space interactions, respectively, and their electronic structures have been studied in detail both experimentally and theoretically, with the experimental assignments being especially complete. The existence of Rydberg states interspersed with the valence states makes the quantum mechanical calculation of their spectra a challenging task. In this work, we explore the electronic excitation energies of 1,4-CHD and 1,3-CHD for both valence and Rydberg states by means of complete active space second-order perturbation theory (CASPT2), extended multi-state CASPT2 (XMS-CASPT2), and multiconfiguration pair-density functional theory (MC-PDFT); it is shown by comparison to experiment that MC-PDFT yields the most accurate results. We found that the inclusion of Rydberg orbitals in the active space not only enables the calculation of Rydberg excitation energies but also improves the accuracy of the valence ones. A special characteristic of the present analysis is the calculation of the second moments of the excited-state orbitals. Because we find that the CASPT2 densities agree well with the CASSCF ones and since the MC-PDFT methods gets accurate excitation energies based on the CASSCF densities, we believe that we can trust these moments as far as giving a more accurate picture of the diffuseness of the excited-state orbitals in these prototype molecules than has previously been available.more » « less
-
Abstract Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowestNeigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated usingab initiovariational Monte Carlo to calculate the degenerate first excited state of a CO molecule.more » « less
-
We present an implementation of the relativistic ionization-potential (IP) equation-of-motion coupled-cluster (EOMCC) with up to 3-hole–2-particle (3h2p) excitations that makes use of the molecular mean-field exact two-component framework and the full Dirac–Coulomb–Breit Hamiltonian. The closed-shell nature of the reference state in an X2C-IP-EOMCC calculation allows for accurate predictions of spin–orbit splittings in open-shell molecules without breaking degeneracies, as would occur in an excitation-energy EOMCC calculation carried out directly on an unrestricted open-shell reference. We apply X2C-IP-EOMCC to the ground and first excited states of the HCCX+ (X = Cl, Br, I) cations, where it is demonstrated that a large basis set (i.e., quadruple-zeta quality) and 3h2p correlation effects are necessary for accurate absolute energetics. The maximum error in calculated adiabatic IPs is on the order of 0.1 eV, whereas spin–orbit splittings themselves are accurate to ≈0.01 eV, as compared to experimentally obtained values.more » « less
-
Despite the power and flexibility of configuration interaction (CI) based methods in computational chemistry, their broader application is limited by an exponential increase in both computational and storage requirements, particularly due to the substantial memory needed for excitation lists that are crucial for scalable parallel computing. The objective of this work is to develop a new CI framework, namely, the small tensor product distributed active space (STP-DAS) framework, aimed at drastically reducing memory demands for extensive CI calculations on individual workstations or laptops, while simultaneously enhancing scalability for extensive parallel computing. Moreover, the STP-DAS framework can support various CI-based techniques, such as complete active space (CAS), restricted active space, generalized active space, multireference CI, and multireference perturbation theory, applicable to both relativistic (two- and four-component) and non-relativistic theories, thus extending the utility of CI methods in computational research. We conducted benchmark studies on a supercomputer to evaluate the storage needs, parallel scalability, and communication downtime using a realistic exact-two-component CASCI (X2C-CASCI) approach, covering a range of determinants from 109 to 1012. Additionally, we performed large X2C-CASCI calculations on a single laptop and examined how the STP-DAS partitioning affects performance.more » « less
An official website of the United States government

