skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Implicit Delta Method
Epistemic uncertainty quantification is a crucial part of drawing credible conclusions from predictive models, whether concerned about the prediction at a given point or any downstream evaluation that uses the model as input. When the predictive model is simple and its evaluation differentiable, this task is solved by the delta method, where we propagate the asymptotically-normal uncertainty in the predictive model through the evaluation to compute standard errors and Wald confidence intervals. However, this becomes difficult when the model and/or evaluation becomes more complex. Remedies include the bootstrap, but it can be computationally infeasible when training the model even once is costly. In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of the predictive model to automatically assess downstream uncertainty. We show that the change in the evaluation due to regularization is consistent for the asymptotic variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference. This provides both a reliable quantification of uncertainty in terms of standard errors as well as permits the construction of calibrated confidence intervals. We discuss connections to other approaches to uncertainty quantification, both Bayesian and frequentist, and demonstrate our approach empirically.  more » « less
Award ID(s):
1846210
PAR ID:
10406746
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
35
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user-specified predictive model. Our approach provides an alternative to the now-standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data-adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non-asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi-definite programming and sum-of-squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analysed. 
    more » « less
  2. Graph Convolutional Network (GCN) has exhibited strong empirical performance in many real-world applications. The vast majority of existing works on GCN primarily focus on the accuracy while ignoring how confident or uncertain a GCN is with respect to its predictions. Despite being a cornerstone of trustworthy graph mining, uncertainty quantification on GCN has not been well studied and the scarce existing efforts either fail to provide deterministic quantification or have to change the training procedure of GCN by introducing additional parameters or architectures. In this paper, we propose the first frequentist-based approach named JuryGCN in quantifying the uncertainty of GCN, where the key idea is to quantify the uncertainty of a node as the width of confidence interval by a jackknife estimator. Moreover, we leverage the influence functions to estimate the change in GCN parameters without re-training to scale up the computation. The proposed JuryGCN is capable of quantifying uncertainty deterministically without modifying the GCN architecture or introducing additional parameters. We perform extensive experimental evaluation on real-world datasets in the tasks of both active learning and semi-supervised node classification, which demonstrate the efficacy of the proposed method. 
    more » « less
  3. Overconfidence is a common issue for deep neural networks, limiting their deployment in real-world applications. To better estimate confidence, existing methods mostly focus on fully-supervised scenarios and rely on training labels. In this paper, we propose the first confidence estimation method for a semi-supervised setting, when most training labels are unavailable. We stipulate that even with limited training labels, we can still reasonably approximate the confidence of model on unlabeled samples by inspecting the prediction consistency through the training process. We use training consistency as a surrogate function and propose a consistency ranking loss for confidence estimation. On both image classification and segmentation tasks, our method achieves state-of-the-art performances in confidence estimation. Furthermore, we show the benefit of the proposed method through a downstream active learning task. 
    more » « less
  4. We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals. 
    more » « less
  5. Quantifying uncertainties for machine learning models is a critical step to reduce human verification effort by detecting predictions with low confidence. This paper proposes a method for uncertainty quantification (UQ) of table structure recognition (TSR). The proposed UQ method is built upon a mixture-of-expert approach termed Test-Time Augmentation (TTA). Our key idea is to enrich and diversify the table representations, to spotlight the cells with high recognition uncertainties. To evaluate the effectiveness, we proposed two heuristics to differentiate highly uncertain cells from normal cells, namely, masking and cell complexity quantification. Masking involves varying the pixel intensity to deem the detection uncertainty. Cell complexity quantification gauges the uncertainty of each cell by its topological relation with neighboring cells. The evaluation results based on standard benchmark datasets demonstrate that the proposed method is effective in quantifying uncertainty in TSR models. To our best knowledge, this study is the first of its kind to enable UQ in TSR tasks. 
    more » « less