Duality between estimation and optimal control is a problem of rich historical significance. The first duality principle appears in the seminal paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic (LQ) optimal control problem. Duality offers a constructive proof technique to derive the Kalman filter equation from the optimal control solution. This paper generalizes the classical duality result of Kalman-Bucy to the nonlinear filter: The state evolves as a continuous-time Markov process and the observation is a nonlinear function of state corrupted by an additive Gaussian noise. A dual process is introduced as a backward stochastic differential equation (BSDE). The process is used to transform the problem of minimum variance estimation into an optimal control problem. Its solution is obtained from an application of the maximum principle, and subsequently used to derive the equation of the nonlinear filter. The classical duality result of Kalman-Bucy is shown to be a special case.
more »
« less
Maximum Principle for Stochastic Control of SDEs with Measurable Drifts
Abstract In this paper, we consider stochastic optimal control of systems driven by stochastic differential equations with irregular drift coefficient. We establish a necessary and sufficient stochastic maximum principle. To achieve this, we first derive an explicit representation of the first variation process (in the Sobolev sense) of the controlled diffusion. Since the drift coefficient is not smooth, the representation is given in terms of the local time of the state process. Then we construct a sequence of optimal control problems with smooth coefficients by an approximation argument. Finally, we use Ekeland’s variational principle to obtain an approximating adjoint process from which we derive the maximum principle by passing to the limit. The work is notably motivated by the optimal consumption problem of investors paying wealth tax.
more »
« less
- Award ID(s):
- 2143861
- PAR ID:
- 10406987
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Optimization Theory and Applications
- Volume:
- 197
- Issue:
- 3
- ISSN:
- 0022-3239
- Page Range / eLocation ID:
- p. 1195-1228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents convergence analysis of a novel data-driven feedback control algorithm designed for generating online controls based on partial noisy observational data. The algorithm comprises a particle filter-enabled state estimation component, estimating the controlled system’s state via indirect observations, alongside an efficient stochastic maximum principle-type optimal control solver. By integrating weak convergence techniques for the particle filter with convergence analysis for the stochastic maximum principle control solver, we derive a weak convergence result for the optimization procedure in search of optimal data-driven feedback control. Numerical experiments are performed to validate the theoretical findings.more » « less
-
The spike variation technique plays a crucial role in deriving Pontryagin's type maximum principle of optimal controls for ordinary differential equations (ODEs), partial differential equations (PDEs), stochastic differential equations (SDEs), and (deterministic forward) Volterra integral equations (FVIEs), when the control domains are not assumed to be convex. It is natural to expect that such a technique could be extended to the case of (forward) stochastic Volterra integral equations (FSVIEs). However, by mimicking the case of SDEs, one encounters an essential difficulty of handling an involved quadratic term. To overcome this difficulty, we introduce an auxiliary process for which one can use It\^o's formula, and develop new technologies inspired by stochastic linear-quadratic optimal control problems. Then the suitable representation of the above-mentioned quadratic form is obtained, and the second-order adjoint equations are derived. Consequently, the maximum principle of Pontryagin type is established. Some relevant extensions are investigated as well.more » « less
-
This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming.more » « less
-
Abstract Motivated by the residual type neural networks (ResNet), this paper studies optimal control problems constrained by a non-smooth integral equation associated to a fractional differential equation. Such non-smooth equations, for instance, arise in the continuous representation of fractional deep neural networks (DNNs). Here the underlying non-differentiable function is the ReLU or max function. The control enters in a nonlinear and multiplicative manner and we additionally impose control constraints. Because of the presence of the non-differentiable mapping, the application of standard adjoint calculus is excluded. We derive strong stationary conditions by relying on the limited differentiability properties of the non-smooth map. While traditional approaches smoothen the non-differentiable function, no such smoothness is retained in our final strong stationarity system. Thus, this work also closes a gap which currently exists in continuous neural networks with ReLU type activation function.more » « less
An official website of the United States government
