Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In this paper, we consider stochastic optimal control of systems driven by stochastic differential equations with irregular drift coefficient. We establish a necessary and sufficient stochastic maximum principle. To achieve this, we first derive an explicit representation of the first variation process (in the Sobolev sense) of the controlled diffusion. Since the drift coefficient is not smooth, the representation is given in terms of the local time of the state process. Then we construct a sequence of optimal control problems with smooth coefficients by an approximation argument. Finally, we use Ekeland’s variational principle to obtain an approximating adjoint process from which we derive the maximum principle by passing to the limit. The work is notably motivated by the optimal consumption problem of investors paying wealth tax.more » « less
- 
            Free, publicly-accessible full text available November 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Let ρ be a general law-invariant convex risk measure, for instance, the average value at risk, and let X be a financial loss, that is, a real random variable. In practice, either the true distribution μ of X is unknown, or the numerical computation of [Formula: see text] is not possible. In both cases, either relying on historical data or using a Monte Carlo approach, one can resort to an independent and identically distributed sample of μ to approximate [Formula: see text] by the finite sample estimator [Formula: see text] (μNdenotes the empirical measure of μ). In this article, we investigate convergence rates of [Formula: see text] to [Formula: see text]. We provide nonasymptotic convergence rates for both the deviation probability and the expectation of the estimation error. The sharpness of these convergence rates is analyzed. Our framework further allows for hedging, and the convergence rates we obtain depend on neither the dimension of the underlying assets nor the number of options available for trading. Funding: Daniel Bartl is grateful for financial support through the Vienna Science and Technology Fund [Grant MA16-021] and the Austrian Science Fund [Grants ESP-31 and P34743]. Ludovic Tangpi is supported by the National Science Foundation [Grant DMS-2005832] and CAREER award [Grant DMS-2143861].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
