skip to main content


Title: Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings
Abstract

Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating the effects of climate change in diverse plant communities. Turgor loss point (πtlp) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlpand species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e., their survival response to drought), combined with measurements of πtlpfor 16 tree species, we show a negative relationship between πtlpand seedling drought resistance. Using long‐term forest plot data, we also show that πtlppredicts seedling survival responses to a severe El Niño‐related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlpexhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlpas a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.

 
more » « less
Award ID(s):
1845403
NSF-PAR ID:
10445037
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
6
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.

    We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?

    Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).

    Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.

     
    more » « less
  2. Summary

    Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.

    We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.

    Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.

    Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.

     
    more » « less
  3. Abstract

    We commonly use trait variation to characterize plant function within and among species and understand how vegetation responds to the environment. Seedling emergence is an especially vulnerable window affecting population and community dynamics, yet trait‐based frameworks often bypass this earliest stage of plant life. Here we assess whether traits vary in ecologically meaningful ways when seedlings are just days old. How do shared evolutionary history and environmental conditions shape trait expression, and can traits explain which seedlings endure drought?

    We measured seedling traits in the first 4 days of life for 16 annual plant species under two water treatments, exploring trait trade‐offs, species‐level plasticity and the ability of traits to predict duration of survival under drought.

    Nearly half of traits showed the imprint of evolutionary history (i.e. significant phylogenetic signal), often reflecting differences between grasses and forbs, two groups separated by a deep evolutionary split. Water availability altered trait expression in most cases, though species‐level plastic responses also reflected evolutionary history.

    On average, new seedlings exhibited substantial trait variation structured as multiple trade‐offs like those found in mature plants. Some species invested in thick roots and shoots, whereas others invested in more efficient tissues. Separately, some invested in tougher roots and others in deeper roots. We also observed trade‐offs related to growth rates (fast or slow) and biomass allocation (above‐ or below‐ground). Drought survival time was correlated most strongly with seed mass, root construction and allocation traits, and phylogeny (grasses vs. forbs).

    Synthesis.Our results show that seed and seedling trait variation among annual species is substantial, and that a few attributes could capture major dimensions of ecological strategies during emergence. With seedling survival times ranging twofold among annuals (from 7.5 to 14.5 days), these strategies could mitigate recruitment responses to more frequent or longer dry spells. Multivariate trait and plasticity strategies should be further explored in studies designed to assess trait‐fitness linkages during recruitment.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    Alterations in global climate via extreme precipitation will have broadscale implications on ecosystem functioning. The increased frequency of drought, coupled with heavy, episodic rainfall are likely to generate impacts on biotic and abiotic processes across aquatic and terrestrial ecosystems. Despite the demonstrated shifts in global precipitation, less is known how extreme precipitation interacts with biophysical factors to control future demographic processes, especially those sensitive to climate extremes such as organismal recruitment and survival. We utilized a field‐based precipitation manipulation experiment in 0.1 ha forest canopy openings to test future climate scenarios characterized by extreme precipitation on temperate tree seedling survival. The effects of planting seedbeds (undisturbed leaf litter/organic material vs. scarified, exposed mineral soils), seedling ontogeny, species, and functional traits were examined against four statistically defined precipitation scenarios. Results indicated that seedlings grown within precipitation treatments characterized by heavy, episodic rainfall preceded by prolonged drying responded similarly to drought treatments lacking episodic inputs. Moreover, among all treatment conditions tested, scarified seedbeds most strongly affected seedling survivorship (odds ratio 6.9). Compared with any precipitation treatment, the effect size (predicted probabilities) of the seedbed was more than twice as important in controlling seedling survivorship. However, the interaction between precipitation and seedbed resulted in a 27.9% improvement in survivorship for moisture‐sensitive species. Seedling sensitivity to moisture was variable among species, and most closely linked with functional traits such as seed mass. For instance, under dry moisture regimes, survivorship increased linearly with seed mass (log transformed; adjustedR2 = 0.72,p < 0.001), yet no relationship was apparent under wet moisture regimes. Although precipitation influenced survival, extreme rainfall events were not enough to offset moisture deficits nor provide a rescue effect under drought conditions. The relationships reported here highlight the importance of plant seedbeds and species (e.g., functional traits) as edaphic and biotic controls that modify the influence of extreme future precipitation on seedling survival in temperate forests. Finally, we demonstrated the biophysical factors that were most influential to early forest development and that may override the negative effects of increasingly variable precipitation. This work contributes to refinements of species distribution models and can inform reforestation strategies intended to maintain biodiversity and ecosystem function under increasing climate extremes.

     
    more » « less
  5. Abstract

    Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site‐level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50values (< −2 MPa) are common across the wet and dry tropics. This high site‐level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.

     
    more » « less