Abstract We used the Condor Array Telescope to obtain deep imaging observations through the luminance broadband and Heii468.6 nm, [Oiii] 500.7 nm, Hei587.5 nm, Hα, [Nii] 658.4 nm, and [Sii] 671.6 nm narrowband filters of an extended region comprising 13 “Condor fields” spanning ≈ 8 × 8 deg2on the sky centered near M81 and M82. Here we describe the acquisition and processing of these observations, which together constitute unique very deep imaging observations of a large portion of the M81 Group through a complement of broad- and narrowband filters. The images are characterized by an intricate web of faint, diffuse, continuum produced by starlight scattered from Galactic cirrus, and all prominent cirrus features identified in the broadband image can also be identified in the narrowband images. We subtracted the luminance image from the narrowband images to leave, more or less, only line emission in the difference images, and we masked regions of the resulting images around stars at an isophotal limit. The difference images exhibit extensive extended structures of ionized gas in the direction of the M81 Group, from known galaxies of the M81 Group, clouds of gas, filamentary structures, and apparent or possible bubbles or shells. Specifically, the difference images show a remarkable filament known as the “Ursa Major Arc;” a remarkable network of criss-crossed filaments between M81 and NGC 2976, some of which intersect and overlap the Ursa Major Arc; and details of a “giant shell of ionized gas.”
more »
« less
Introducing the Condor Array Telescope. I. Motivation, Configuration, and Performance
Abstract The “Condor Array Telescope” or “Condor” is a high-performance “array telescope” comprised of six apochromatic refracting telescopes of objective diameter 180 mm, each equipped with a large-format, very low-read-noise (≈1.2 e − ), very rapid-read-time (<1 s) CMOS camera. Condor is located at a very dark astronomical site in the southwest corner of New Mexico, at the Dark Sky New Mexico observatory near Animas, roughly midway between (and more than 150 km from either) Tucson and El Paso. Condor enjoys a wide field of view (2.29 × 1.53 deg 2 or 3.50 deg 2 ), is optimized for measuring both point sources and extended, very low-surface-brightness features, and for broad-band images can operate at a cadence of 60 s (or even less) while remaining sky-noise limited with a duty cycle near 100%. In its normal mode of operation, Condor obtains broad-band exposures of exposure time 60 s over dwell times spanning dozens or hundreds of hours. In this way, Condor builds up deep, sensitive images while simultaneously monitoring tens or hundreds of thousands of point sources per field at a cadence of 60 s. Condor is also equipped with diffraction gratings and with a set of He ii 468.6 nm, [O iii ] 500.7 nm, He i 587.5 nm, H α 656.3 nm, [N ii ] 658.4 nm, and [S ii ] 671.6 nm narrow-band filters, allowing it to address a variety of broad- and narrow-band science issues. Given its unique capabilities, Condor can access regions of “astronomical discovery space” that have never before been studied. Here we introduce Condor and describe various aspects of its performance.
more »
« less
- PAR ID:
- 10407151
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 135
- Issue:
- 1043
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 015002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We used the Condor Array Telescope to obtain deep imaging observations through luminance broadband and Heii, [Oiii], Hei, Hα, [Nii], and [Sii] narrowband filters of an extended region of the M81 Group spanning ≈8 × 8 deg2on the sky centered near M81 and M82. Here, we report aspects of these observations that are specifically related to (1) a remarkable filament known as the “Ursa Major Arc” that stretches ≈30° across the sky roughly in the direction of Ursa Major, (2) a “giant shell of ionized gas” that stretches ≈0.8 deg across the sky located ≈0.6 deg northwest of M82, and (3) a remarkable network of ionized gaseous filaments revealed by the new Condor observations that appear to connect the arc, the shell, and various galaxies of the M81 Group and, by extension, the group itself. We measure flux ratios between the various ions to help to distinguish photoionized from shock-ionized gas, and we find that the flux ratios of the arc and shell are not indicative of shock ionization. This provides strong evidence against a previous interpretation of the arc as an interstellar shock produced by an unrecognized supernova. We suggest that all of these objects, including the arc, are associated with the M81 Group and are located at roughly the distance (≈3.6 Mpc) of M81, that the arc is an intergalactic filament, and that the objects are associated with the low-redshift cosmic web.more » « less
-
Abstract New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: an all-sky, arcsecond-resolution, 1000 telescope array which builds a simultaneously high-cadence and deep survey by observing the entire sky all night. As a concrete example, we describe the Argus Array, a 5 m-class telescope with an all-sky field of view and the ability to reach extremely high cadences using low-noise CMOS detectors. Each 55 GPix Argus exposure covers 20% of the entire sky to m g = 19.6 each minute and m g = 21.9 each hour; a high-speed mode will allow sub-second survey cadences for short times. Deep coadds will reach m g = 23.6 every five nights over 47% of the sky; a larger-aperture array telescope, with an étendue close to the Rubin Observatory, could reach m g = 24.3 in five nights. These arrays can build two-color, million-epoch movies of the sky, enabling sensitive and rapid searches for high-speed transients, fast-radio-burst counterparts, gravitational-wave counterparts, exoplanet microlensing events, occultations by distant solar system bodies, and myriad other phenomena. An array of O(1000) telescopes, however, would be one of the most complex astronomical instruments yet built. Standard arrays with hundreds of tracking mounts entail thousands of moving parts and exposed optics, and maintenance costs would rapidly outpace the mass-produced-hardware cost savings compared to a monolithic large telescope. We discuss how to greatly reduce operations costs by placing all optics in thermally controlled, sealed domes with only a few moving parts. Coupled with careful software scope control and use of existing pipelines, we show that the Argus Array could become the deepest and fastest Northern sky survey, with total costs in the $20M range.more » « less
-
Abstract ArgusSpec is a prototype autonomous spectroscopic follow-up instrument designed to characterize flares detected by the Argus Pathfinder telescope array by taking short exposure (30 s) broadband spectra (370–750 nm) at low resolutions (R∼ 150 at 500 nm). The instrument is built from consumer off-the-shelf astronomical equipment, assembled inside a shipping container, and deployed alongside the Argus Pathfinder at a dark sky observing site in Western North Carolina. In this paper, we describe the hardware design, system electronics, custom control software suite, automated target acquisition procedure, and data reduction pipeline. We present initial on-sky test data used to evaluate system performance and show a series of spectra taken of a small flare from AD Leonis. The $35k prototype ArgusSpec was designed, built, and deployed in under a year, largely from existing parts, and has been operating on-sky since 2023 March. With current hardware and software, the system is capable of receiving an observation, slewing, performing autonomous slit acquisition, and beginning data acquisition within an average of 32 s. With Argus Pathfinder’s 1 s cadence survey reporting alerts of rising sources within 2 s of onset, ArgusSpec can reach new targets well within a minute of the start of the event. As built, ArgusSpec can observe targets down to a 20σlimiting magnitude ofmV≈ 13 at 30 s cadence with an optical resolution ofR∼ 150 (at 500 nm). With automated rapid acquisition demonstrated, later hardware upgrades will be based on a clean-sheet optical design, solving many issues in the current system, significantly improving the limiting magnitude, and potentially enabling deep spectroscopy by the coaddition of data from an array of ArgusSpec systems. The primary science driver behind ArgusSpec is the characterization of the blackbody evolution of flares from nearby M-dwarfs. Large flares emitted by these stars could have significant impacts on the potential habitability of any orbiting exoplanets, but our current understanding of these events is in large part built on observations from a handful of active stars. ArgusSpec will characterize large numbers of flares from across the night sky, building a spectroscopic library of the most extreme events from a wide variety of stellar masses and ages.more » « less
-
ABSTRACT The existence of a vast nova shell surrounding the prototypical dwarf nova Z Camelopardalis (Z Cam) proves that some old novae undergo metamorphosis to appear as dwarf novae thousands of years after a nova eruption. The expansion rates of ancient nova shells offer a way to constrain both the time between nova eruptions and the time for post-nova mass transfer rates to decrease significantly, simultaneously testing nova thermonuclear runaway models and hibernation theory. Previous limits on the expansion rate of part of the Z Cam shell constrain the inter-eruption time between Z Cam nova events to be >1300 yr. Deeper narrow-band imaging of the ejecta of Z Cam with the Condor Array Telescope now reveals very low surface brightness areas of the remainder of the shell. A second, even fainter shell is also detected, concentric with and nearly three times the size of the ‘inner’ shell. This is the first observational support of the prediction that concentric shells must surround the frequently erupting novae of relatively massive white dwarfs. The Condor images extend our Z Cam imaging baseline to 15 yr, yielding the inner shell’s expansion rate as v = 83 ± 37 km s−1 at 23 deg south of west, in excellent agreement with our 2012 prediction. This velocity corresponds to an approximate age of $$t = 2672^{-817}_{+2102}$$ yr. While consistent with the suggestion that the most recent nova eruption of Z Cam was the transient recorded by Chinese imperial astrologers in the year 77 bce, the age uncertainty is still too large to support or disprove a connection with Z Cam.more » « less
An official website of the United States government

