skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional norms, condition numbers and numerical algorithms in algebraic geometry
In numerical linear algebra, a well-established practice is to choose a norm that exploits the structure of the problem at hand to optimise accuracy or computational complexity. In numerical polynomial algebra, a single norm (attributed to Weyl) dominates the literature. This article initiates the use of L_p norms. This classical idea yields strong improvements in the analysis of the number of steps performed by numerous iterative algorithms. In particular, we exhibit three algorithms where, despite the complexity of computing L_{infinity } norm the use L_p norms substantially reduces computational complexity: a subdivision-based algorithm in real algebraic geometry for computing the homology of semialgebraic sets, a well-known meshing algorithm in computational geometry and the computation of zeros of systems of complex quadratic polynomials (a particular case of Smale’s 17th problem).  more » « less
Award ID(s):
2110075
PAR ID:
10476925
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
10
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    Given a set of points of interest, a volumetric spanner is a subset of the points using which all the points can be expressed using “small” coefficients (measured in an appropriate norm). This notion, which has also been referred to as a well-conditioned basis, has found several applications, including bandit linear optimization, determinant maximization, and matrix low rank approximation. In this paper, we give almost optimal bounds on the size of volumetric spanners for all L_p norms, and show that they can be constructed using a simple local search procedure. We then show the applications of our result to other tasks and in particular the problem of finding coresets for the Minimum Volume Enclosing Ellipsoid (MVEE) problem. 
    more » « less
  2. null (Ed.)
    The object of study of this paper is the following multi-determinantal algebraic variety, SINGn, m, which captures the symbolic determinant identity testing (SDIT) problem (a canonical version of the polynomial identity testing (PIT) problem), and plays a central role in algebra, algebraic geometry and computational complexity theory. SINGn, m is the set of all m-tuples of n×n complex matrices which span only singular matrices. In other words, the determinant of any linear combination of the matrices in such a tuple vanishes. The algorithmic complexity of testing membership in SINGn, m is a central question in computational complexity. Having almost a trivial probabilistic algorithm, finding an efficient deterministic algorithm is a holy grail of derandomization, and to top it, will imply super-polynomial circuit lower bounds! A sequence of recent works suggests efficient deterministic “geodesic descent” algorithms for memberships in a general class of algebraic varieties, namely the null cones of (reductive) linear group actions. Can such algorithms be used for the problem above? Our main result is negative: SINGn, m is not the null cone of any such group action! This stands in stark contrast to a non-commutative analog of this variety (for which such algorithms work), and points to an inherent structural difficulty of SINGn, m. In other words, we provide a barrier for the attempts of derandomizing SDIT via these algorithms. To prove this result we identify precisely the group of symmetries of SINGn, m. We find this characterization, and the tools we introduce to prove it, of independent interest. Our characterization significantly generalizes a result of Frobenius for the special case m=1 (namely, computing the symmetries of the determinant). Our proof suggests a general method for determining the symmetries of general algebraic varieties, an algorithmic problem that was hardly studied and we believe is central to algebraic complexity. 
    more » « less
  3. We investigate the use of conventional angle of arrival (AoA) algorithms the Bartlett’s algorithm, the Minimum Variance Distortion Response (MVDR or Capon) algorithm, and the Minimum Norm algorithm for estimating the AoA theta together with our previously introduced algorithms linear regression (LR), inverse of the root sum squares of channel coefficients (ISQ), as well as a novel use of the MUSIC algorithm for estimating the distance from the base station, rho in the context of channel charting. We carry out evaluations in terms of the visual quality of the channel charts, the dimensionality reduction performance measures trustworthiness (TW) and connectivity (CT), as well as the execution time of the algorithms. We find that although the Bartlett’s algorithm, MVDR, and Minimum Norm algorithms have sufficiently close performance to techniques we studied earlier, the Minimum Norm algorithm has significantly higher computational complexity than the other two. Previously, we found that the use of the MUSIC algorithm for estimation of both theta and rho has a very high performance. In this paper, we investigated and quantified the performance of the Bartlett algorithm in its use for estimating both and , similar to the our previously introduced technique of using MUSIC for estimating both. 
    more » « less
  4. Low-rank approximation is a classic tool in data analysis, where the goal is to approximate a matrix A with a low-rank matrix L so as to minimize the error ||A-L||_F. However in many applications, approximating some entries is more important than others, which leads to the weighted low rank approximation problem. However, the addition of weights makes the low-rank approximation problem intractable. Thus many works have obtained efficient algorithms under additional structural assumptions on the weight matrix (such as low rank, and appropriate block structure). We study a natural greedy algorithm for weighted low rank approximation and develop a simple condition under which it yields bi-criteria approximation up to a small additive factor in the error. The algorithm involves iteratively computing the top singular vector of an appropriately varying matrix, and is thus easy to implement at scale. Our methods also allow us to study the problem of low rank approximation under L_p norm error. 
    more » « less
  5. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021) introduced l_p-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize the l_p norm of the edge boundaries of k parts. We provide an O(log^{1/2} n log^{1/2 + 1/p} k) approximation algorithm for this problem, improving upon the approximation guarantee of O(log^{3/2} n log^{1/2} k) due to Chandrasekaran and Wang. We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We assume that we are given access to an oracle, which answers certain queries about the norm. We present an O(log^{1/2} n log^{7/2} k) approximation algorithm with a weaker oracle and an O(log^{1/2} n log^{5/2} k) approximation algorithm with a stronger oracle. Additionally, we show that without any oracle access, there is no n^{1/4-ε} approximation algorithm for every ε > 0 assuming the Hypergraph Dense-vs-Random Conjecture. 
    more » « less