ABSTRACT Seismic tomography is the most abundant source of information about the internal structure of the Earth at scales ranging from a few meters to thousands of kilometers. It constrains the properties of active volcanoes, earthquake fault zones, deep reservoirs and storage sites, glaciers and ice sheets, or the entire globe. It contributes to outstanding societal problems related to natural hazards, resource exploration, underground storage, and many more. The recent advances in seismic tomography are being translated to nondestructive testing, medical ultrasound, and helioseismology. Nearly 50 yr after its first successful applications, this article offers a snapshot of modern seismic tomography. Focused on major challenges and particularly promising research directions, it is intended to guide both Earth science professionals and early-career scientists. The individual contributions by the coauthors provide diverse perspectives on topics that may at first seem disconnected but are closely tied together by a few coherent threads: multiparameter inversion for properties related to dynamic processes, data quality, and geographic coverage, uncertainty quantification that is useful for geologic interpretation, new formulations of tomographic inverse problems that address concrete geologic questions more directly, and the presentation and quantitative comparison of tomographic models. It remains to be seen which of these problems will be considered solved, solved to some extent, or practically unsolvable over the next decade.
more »
« less
Towards the geological parametrization of seismic tomography
SUMMARY Seismic tomography is a cornerstone of geophysics and has led to a number of important discoveries about the interior of the Earth. However, seismic tomography remains plagued by the large number of unknown parameters in most tomographic applications. This leads to the inverse problem being underdetermined and requiring significant non-geologically motivated smoothing in order to achieve unique answers. Although this solution is acceptable when using tomography as an explorative tool in discovery mode, it presents a significant problem to use of tomography in distinguishing between acceptable geological models or in estimating geologically relevant parameters since typically none of the geological models considered are fit by the tomographic results, even when uncertainties are accounted for. To address this challenge, when seismic tomography is to be used for geological model selection or parameter estimation purposes, we advocate that the tomography can be explicitly parametrized in terms of the geological models being tested instead of using more mathematically convenient formulations like voxels, splines or spherical harmonics. Our proposition has a number of technical difficulties associated with it, with some of the most important ones being the move from a linear to a non-linear inverse problem, the need to choose a geological parametrization that fits each specific problem and is commensurate with the expected data quality and structure, and the need to use a supporting framework to identify which model is preferred by the tomographic data. In this contribution, we introduce geological parametrization of tomography with a few simple synthetic examples applied to imaging sedimentary basins and subduction zones, and one real-world example of inferring basin and crustal properties across the continental United States. We explain the challenges in moving towards more realistic examples, and discuss the main technical difficulties and how they may be overcome. Although it may take a number of years for the scientific program suggested here to reach maturity, it is necessary to take steps in this direction if seismic tomography is to develop from a tool for discovering plausible structures to one in which distinct scientific inferences can be made regarding the presence or absence of structures and their physical characteristics.
more »
« less
- Award ID(s):
- 2011079
- PAR ID:
- 10407802
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 234
- Issue:
- 2
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 1447-1462
- Size(s):
- p. 1447-1462
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Differences between P- and S-wave models have been frequently used as evidence for the presence of large-scale compositional heterogeneity in the Earth's mantle. Our two-step machine learning (ML) analysis of 28 P- and S-wave global tomographic models reveals that, on a global scale, such differences are for the most part not intrinsic and could be reduced by changing the models in their respective null spaces. In other words, P- and S-wave images of mantle structure are not necessarily distinct from each other. Thus, a purely thermal explanation for large-scale seismic structure is sufficient at present; significant mantle compositional heterogeneities do not need to be invoked. We analyse 28 widely used tomographic models based on various theoretical approximations ranging from ray theory (e.g. UU-P07 and MIT-P08), Born scattering (e.g. DETOX) and full-waveform techniques (e.g. CSEM and GLAD). We apply Varimax principal component analysis to reduce tomography model dimensionality by 83 percent, while preserving relevant information (94 percent of the original variance), followed by hierarchical clustering (HC) analysis using Ward's method to quantitatively categorize all models into hierarchical groups based on similarities. We found two main tomography model clusters: Cluster 1, which we called ‘Pure P wave’, is composed of six P-wave models that only use longitudinal body wave phases (e.g. P, PP and Pdiff); and Cluster 2, which we called ‘Mixed’, includes both P- and S-wave models. P-wave models in the ‘Mixed’ cluster use inversion methods that include inputs from other geophysical and geological data sources, and this causes them to be more similar to S-wave models than Pure P-wave models without significant loss of fitness to P-wave data. Given that inclusion of new data classes and seismic phases in more recent tomographic models significantly changes imaged seismic structure, our ML assessment of global tomography model similarity may improve selection of appropriate P- and S-wave models for future global tomography comparative studies.more » « less
-
This work concerns the numerical realization of a Cauchy-type integral formula for sequence valued analytic functions in the sense of Bukhgeim, and its applications to the source reconstruction problem in inverse radiative transport through a non-absorbing and non-scattering medium. The inverse source problem is mathematically equivalent to the classical X-ray Computed Tomography (CT), where a function is to be determined from its line integrals. The proposed algorithms have the added advantage to extend to the source determination problems in media with absorbing and scattering properties. Such extensions cannot be achieved in the existing X-ray CT algorithms. The numerical experiments demonstrate the feasibility of our new tomographic algorithms.more » « less
-
Abstract Computed Tomography (CT) has been widely adopted in medicine and it is increasingly being used in scientific and industrial applications. Parallelly, research in different mathematical areas concerning discrete inverse problems has led to the development of new sophisticated numerical solvers that can be applied in the context of CT. The Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox was born almost a decade ago precisely in the gap between mathematics and high performance computing for real CT data, providing user-friendly open-source software tools for image reconstruction. However, since its inception, the tools’ features and codebase have had over a twenty-fold increase, and are now including greater geometric flexibility, a variety of modern algorithms for image reconstruction, high-performance computing features and support for other CT modalities, like proton CT. The purpose of this work is two-fold: first, it provides a structured overview of the current version of the TIGRE toolbox, providing appropriate descriptions and references, and serving as a comprehensive and peer-reviewed guide for the user; second, it is an opportunity to illustrate the performance of several of the available solvers showcasing real CT acquisitions, which are typically not be openly available to algorithm developers.more » « less
-
Plate reconstructions of oceanic domains are generally based on paleo-magnetic and seafloor spreading records. However, uncertainties associated with such reconstructions grow rapidly with increasing geological age because the original oceanic plates have been subducted. Here we synthesize advances in seismic tomographic mapping of subducted plates now lying within the mantle that assist plate reconstructions. Our proposed Japan–NW Pacific subduction histories incorporate tomography results and show three distinct stages comparable to those revealed by geochronology, petrology, and geochemistry. We propose major revisions to previously accepted ideas about the age, kinematics, and identity of the plates outboard of Japan during the Cretaceous–Paleogene Sanbagawa-Ryoke paired metamorphism. These revisions require updates to relevant plate convergence boundary conditions and thermo-dynamic models.more » « less
An official website of the United States government
