skip to main content


Title: Field‐Induced Ferroelectric Phase Evolution During Polarization “Wake‐Up” in Hf 0.5 Zr 0.5 O 2 Thin Film Capacitors
Abstract

As an emerging nonvolatile memory technology, HfO2‐based ferroelectrics exhibit excellent compatibility with silicon CMOS process flows; however, the reliability of polarization switching in these materials remains a major challenge. During repeated field programming and erase of the polarization state of initially pristine HfO2‐based ferroelectric capacitors, the magnitude of the measured polarization increases, a phenomenon known as “wake‐up”. In this study, the authors attempt to understand what causes the wake‐up effect in Hf0.5Zr0.5O2(HZO) capacitors using nondestructive methods that probe statistically significant sample volumes. Synchrotron X‐ray diffraction reveals a concerted shift in HZO Bragg peak position as a function of polarization switching cycle number in films prepared under conditions such that they exhibit extremely large (≈3000%) wake‐up. In contrast, a control sample with insignificant wake‐up shows no such peak shift. Capacitance – voltage measurements show evolution in the capacitance loop with switching cycle number for the wake‐up sample and no change for the control sample. Piezoresponse force microscopy measurements are utilized to visualize the domain switching with wake‐up. The combination of these observations clearly demonstrates that wake‐up is caused by a field‐driven phase transformation of the tetragonal phase to the metastable ferroelectric orthorhombic phase during polarization switching of HZO capacitors.

 
more » « less
NSF-PAR ID:
10407889
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
9
Issue:
6
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less
  2. Abstract

    Ferroelectric switching is demonstrated in CeO2‐doped Hf0.5Zr0.5O2(HZCO) thin films with application in back‐end‐of‐line compatible embedded memories. At low cerium oxide doping concentrations (2.0–5.6 mol%), the ferroelectric orthorhombic phase is stabilized after annealing at temperatures below 400 °C. HZCO ferroelectrics show reliable switching characteristics beyond 1011cycles in TiN/HZCO/TiN capacitors, several orders of magnitude greater than identically processed Hf0.5Zr0.5O2(HZO) capacitors, without sacrificing polarization and retention. Internal photoemission and photoconductivity experiments show that CeO2‐doping introduces in‐gap states in HZCO that are nearly aligned with TiN Fermi level, facilitating electron injection through these states. The enhanced average bulk conduction, which may lead to more uniform thermal dissipation in the HZCO films, delays irreversible degradation via breakdown that leads to device failure after repeated programming cycles.

     
    more » « less
  3. While ferroelectric HfO2shows promise for use in memory technologies, limited endurance is one factor that challenges its widespread application. Herein, endurance is investigated through field cycling W/Hf0.5Zr0.5O2/W capacitors above the coercive field while manipulating the time under field using bipolar pulses of varying pulse duration or duty cycle. Both remanent polarization and leakage current increase with increasing pulse duration. Additionally, an order of magnitude decrease in the pulse duration from 20 to 2 μs results in an increase in endurance lifetime of nearly two orders of magnitude from 3 × 106to 2 × 108cycles. These behaviors are attributed to increasing time under field allowing for charged oxygen vacancy migration, initially unpinning domains, or driving phase transformations before segregating to grain boundaries and electrode interfaces. This oxygen vacancy migration causes increasing polarization before creating conducting percolation paths that result in degradation and premature device failure. This process is suppressed for 2 μs pulse duration field cycling where minimal wake‐up and lower leakage before device failure are observed, suggesting that very short pulses can be used to significantly increase device endurance. These results provide insight into the impact of pulse duration on device performance and highlight consideration of use of conditions when endurance testing.

     
    more » « less
  4. Since 2011, ferroelectric HfO2has attracted growing interest in both fundamental and application oriented groups. In this material, noteworthy wake‐up and fatigue effects alter the shape of the polarization hysteresis loop during field cycling. Such changes are problematic for application of HfO2to ferroelectric memories, which require stable polarization hystereses. Herein, electrical and structural techniques are implemented to unveil how cyclic switching changes nanoscale film structure, which modifies the polarization hysteresis. Impedance spectroscopy and scanning transmission electron microscopy identify regions with different dielectric and conductive properties in films at different cycling stages, enabling development of a structural model to explain the wake‐up and fatigue phenomena. The wake‐up regime arises due to changes in bulk and interfacial structuring: the bulk undergoes a phase transformation from monoclinic to orthorhombic grains, and the interfaces show changes in and diminishment of a nonuniform, defect rich, tetragonal HfO2layer near the electrodes. The evolution of these aspects of structuring contributes to the increase inPrand the opening of the constrictedPVhysteresis that are known to occur with wake‐up. The onset of the fatigue regime is correlated to an increasing concentration of bulk defects, which are proposed to pin domain walls.

     
    more » « less
  5. Abstract

    One of the general features of ferroelectric systems is a complex nature of polarization reversal, which involves domain nucleation and motion of domain walls. Here, time‐resolved nanoscale domain imaging is applied in conjunction with the integral switching current measurements to investigate the mechanism of polarization reversal in yttrium‐doped HfO2(Y:HfO2)—currently one of the most actively studied ferroelectric systems. More specifically, the effect of film microstructure on the nucleation process is investigated by performing a comparative study of the polarization switching behavior in the epitaxial and polycrystalline Y:HfO2thin film capacitors. It is found that although the epitaxial Y:HfO2capacitors tend to switch slower than their polycrystalline counterparts, they exhibit a significantly higher nucleation density and rate, suggesting that this is a rate‐limiting mechanism. In addition, it is observed that under the external fields approaching the activation field value, the switching kinetics can be described equally well by the nucleation limited switching and the Kolmogorov‐Avrami‐Ishibashi models for both types of capacitors. This signifies convergence of two different mechanisms implying that the polarization reversal proceeds via a homogeneous nucleation process unaffected by the film microstructure, which can be considered as approaching the intrinsic switching limit.

     
    more » « less