Ferroelectric hafnium-zirconium oxide (HZO) is an excellent candidate for low-power non-volatile memory applications due to its demonstrated ferroelectricity at the nanoscale and compatibility with silicon-based technologies. The interface of HZO in contact with its electrode, typically TiN in a metal–ferroelectric–metal (MFM) capacitor configuration, is of particular interest because factors, such as volume confinement, impurity concentration, interfacial layers, thermal expansion mismatch, and defect trapping, are believed to play a crucial role in the ferroelectric performance of HZO-based devices. Processing variables, such as precursor type, oxygen source, dose duration, and deposition temperature, are known to strongly affect the quality of the oxide–metal interface. However, not many studies have focused on the effect of breaking or maintaining vacuum during MFM deposition. In this study, sequential, no-atmosphere processing (SNAP) is employed to avoid atmospheric exposure, where electrode TiN and ferroelectric HZO are deposited sequentially in the atomic layer deposition chamber without breaking vacuum. The effect of breaking vacuum during the sequential deposition steps is elucidated by fabricating and characterizing MFM capacitors with and without intentional vacuum breaks prior to the deposition of the HZO and top TiN. Using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we reveal that breaking vacuum after bottom TiN electrode deposition leads to interfacial oxidation and increased carbon contamination, which preferentially stabilizes the non-ferroelectric tetragonal phase and lead to diminished remanent polarization. Avoiding carbon impurities and interfacial TiOx at the HZO and TiN interface using SNAP leads to heightened remanent polarization, reduced leakage current density, and elimination of the wake-up effect. Our work highlights the effect of vacuum breaking on the processing-structure-properties of HZO-based capacitors, revealing that maintaining vacuum can significantly improve ferroelectric properties.
- NSF-PAR ID:
- 10392009
- Date Published:
- Journal Name:
- Nanotechnology
- Volume:
- 34
- Issue:
- 12
- ISSN:
- 0957-4484
- Page Range / eLocation ID:
- 125703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ferroelectric switching is demonstrated in CeO2‐doped Hf0.5Zr0.5O2(HZCO) thin films with application in back‐end‐of‐line compatible embedded memories. At low cerium oxide doping concentrations (2.0–5.6 mol%), the ferroelectric orthorhombic phase is stabilized after annealing at temperatures below 400 °C. HZCO ferroelectrics show reliable switching characteristics beyond 1011cycles in TiN/HZCO/TiN capacitors, several orders of magnitude greater than identically processed Hf0.5Zr0.5O2(HZO) capacitors, without sacrificing polarization and retention. Internal photoemission and photoconductivity experiments show that CeO2‐doping introduces in‐gap states in HZCO that are nearly aligned with TiN Fermi level, facilitating electron injection through these states. The enhanced average bulk conduction, which may lead to more uniform thermal dissipation in the HZCO films, delays irreversible degradation via breakdown that leads to device failure after repeated programming cycles.
-
Abstract As an emerging nonvolatile memory technology, HfO2‐based ferroelectrics exhibit excellent compatibility with silicon CMOS process flows; however, the reliability of polarization switching in these materials remains a major challenge. During repeated field programming and erase of the polarization state of initially pristine HfO2‐based ferroelectric capacitors, the magnitude of the measured polarization increases, a phenomenon known as “wake‐up”. In this study, the authors attempt to understand what causes the wake‐up effect in Hf0.5Zr0.5O2(HZO) capacitors using nondestructive methods that probe statistically significant sample volumes. Synchrotron X‐ray diffraction reveals a concerted shift in HZO Bragg peak position as a function of polarization switching cycle number in films prepared under conditions such that they exhibit extremely large (≈3000%) wake‐up. In contrast, a control sample with insignificant wake‐up shows no such peak shift. Capacitance – voltage measurements show evolution in the capacitance loop with switching cycle number for the wake‐up sample and no change for the control sample. Piezoresponse force microscopy measurements are utilized to visualize the domain switching with wake‐up. The combination of these observations clearly demonstrates that wake‐up is caused by a field‐driven phase transformation of the tetragonal phase to the metastable ferroelectric orthorhombic phase during polarization switching of HZO capacitors.
-
Abstract Ferroelectric tunneling junctions (FTJs) with tunable tunneling electroresistance (TER) are promising for many emerging applications, including non-volatile memories and neurosynaptic computing. One of the key challenges in FTJs is the balance between the polarization value and the tunneling current. In order to achieve a sizable on-current, the thickness of the ferroelectric layer needs to be scaled down below 5 nm. However, the polarization in these ultra-thin ferroelectric layers is very small, which leads to a low tunneling electroresistance (TER) ratio. In this paper, we propose and demonstrate a new type of FTJ based on metal/Al2O3/Zr-doped HfO2/Si structure. The interfacial Al2O3layer and silicon substrate enable sizable TERs even when the thickness of Zr-doped HfO2(HZO) is above 10 nm. We found that F-N tunneling dominates at read voltages and that the polarization switching in HZO can alter the effective tunneling barrier height and tune the tunneling resistance. The FTJ synapses based on Al2O3/HZO stacks show symmetric potentiation/depression characteristics and widely tunable conductance. We also show that spike-timing-dependent plasticity (STDP) can be harnessed from HZO based FTJs. These novel FTJs will have high potential in non-volatile memories and neural network applications.
-
Large remnant polarization and great reliability characteristics in W/HZO/W ferroelectric capacitorsIn this work, the effect of rapid thermal annealing (RTA) temperature on the ferroelectric polarization in zirconium-doped hafnium oxide (HZO) was studied. To maximize remnant polarization (2P r ), in-plane tensile stress was induced by tungsten electrodes under optimal RTA temperatures. We observed an increase in 2P r with RTA temperature, likely due to an increased proportion of the polar ferroelectric phase in HZO. The HZO capacitors annealed at 400°C did not exhibit any ferroelectric behavior, whereas the HZO capacitors annealed at 800°C became highly leaky and shorted for voltages above 1 V. On the other hand, annealing at 700 °C produced HZO capacitors with a record-high 2P r of ∼ 64 μ C cm −2 at a relatively high frequency of 111 kHz. These ferroelectric capacitors have also demonstrated impressive endurance and retention characteristics, which will greatly benefit neuromorphic computing applications.more » « less