skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Almost all extremal black holes in AdS are singular
A bstract We investigate the geometry near the horizon of a generic, four-dimensional extremal black hole. When the cosmological constant is negative, we show that (in almost all cases) tidal forces diverge as one crosses the horizon, and this singularity is stronger for larger black holes. In particular, this applies to generic nonspherical black holes, such as those satisfying inhomogeneous boundary conditions. Nevertheless, all scalar curvature invariants remain finite. Moreover, we show that nonextremal black holes have tidal forces that diverge in the extremal limit. Holographically, this singularity is reflected in anomalous scaling of the specific heat with temperature. Similar (albeit weaker) effects are present when the cosmological constant is positive, but not when it vanishes.  more » « less
Award ID(s):
2107939
PAR ID:
10408045
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory. 
    more » « less
  2. Abstract Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and create distinguishing features referred to as soft hair. Amongst these are a left–right pair of Virasoro algebras with associated charges that reproduce the Bekenstein–Hawking entropy for Kerr black holes. In this paper we show that if one adds a negative cosmological constant, there is a similar set of infinitesimal diffeomorphisms that act non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a central charge. Adding a boundary counterterm, justified to achieve integrability, leads to well-defined central charges with c L = c R . The macroscopic area law for Kerr-AdS black holes follows from the assumption of a Cardy formula governing the black hole microstates. 
    more » « less
  3. A bstract We derive a non-BPS linear ansatz using the charged Weyl formalism in string and M-theory backgrounds. Generic solutions are static and axially-symmetric with an arbitrary number of non-BPS sources corresponding to various brane, momentum and KKm charges. Regular sources are either four-charge non-extremal black holes or smooth non-BPS bubbles. We construct several families such as chains of non-extremal black holes or smooth non-BPS bubbling geometries and study their physics. The smooth horizonless geometries can have the same mass and charges as non-extremal black holes. Furthermore, we find examples that scale towards the four-charge BPS black hole when the non-BPS parameters are taken to be small, but the horizon is smoothly resolved by adding a small amount of non-extremality. 
    more » « less
  4. null (Ed.)
    A bstract Force-Free Electrodynamics for black holes in Anti de Sitter is considered. We present new, energy extracting solutions of Force-Free Electrodynamics in Anti de Sitter-Near Horizon Extremal Kerr and Super-Entropic Near Horizon Extremal Kerr geometries. The relevant equations of motion are derived from an action for force-free plasma surrounding spinning black holes with generic asymptotics. We consider the energy flux of electrodynamic fields in rotating frames to argue that the correct measure for energy extraction is the energy flux measured by a rotating observer in the near horizon region. We illustrate this procedure by application to near horizon solutions in Kerr, AdS-Kerr and BTZ. 
    more » « less
  5. It is widely expected that generic black holes have a nonempty but weakly singular Cauchy horizon, due to mass inflation. Indeed this has been proven by the author in the spherical collapse of a charged scalar field, under decay assumptions of the field in the black exterior which are conjectured to be generic. A natural question then arises: can this weakly singular Cauchy horizon close off the space-time, or does the weak null singularity necessarily “break down,” giving way to a different type of singularity? The main result of this paper is to prove that the Cauchy horizon cannot ever “close off” the space-time. As a consequence, the weak null singularity breaks down and transitions to a stronger singularity for which the area-radius r extends to 0. 
    more » « less