skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale architecture for fast optical addressing and control of large-scale qubit arrays
This paper presents a technique for rapid site-selective control of the quantum state of particles in a large array using the combination of a fast deflector (e.g., an acousto-optic deflector) and a relatively slow spatial light modulator (SLM). The use of SLMs for site-selective quantum state manipulation has been limited due to slow transition times that prevent rapid, consecutive quantum gates. By partitioning the SLM into multiple segments and using a fast deflector to transition between them, it is possible to substantially reduce the average time increment between scanner transitions by increasing the number of gates that can be performed for a single SLM full-frame setting. We analyzed the performance of this device in two different configurations: In configuration 1, each SLM segment addresses the full qubit array; in configuration 2, each SLM segment addresses a subarray and an additional fast deflector positions that subarray with respect to the full qubit array. With these hybrid scanners, we calculated qubit addressing rates that are tens to hundreds of times faster than using an SLM alone.  more » « less
Award ID(s):
2016136 2210437
PAR ID:
10408282
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
62
Issue:
12
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 3242
Size(s):
Article No. 3242
Sponsoring Org:
National Science Foundation
More Like this
  1. Optically trapped neutral atoms are one of several leading approaches for scalable quantum information processing. When prepared in electronic ground states in deep optical lattices atomic qubits are weakly interacting with long coherence times. Excitation to Rydberg states turns on strong interactions which enable fast gates and entanglement generation. I will present quantum logic experiments with a 2D array of blue detuned lines that traps more than 100 Cesium atom qubits. The array is randomly loaded from a MOT and an optical tweezer steered by a 2D acousto-optic deflector is used to ll subregions of the array. Progress towards high fidelity entangling gates based on Rydberg excitation lasers with lower noise, and optimized optical polarization and magnetic eld settings will be shown. 
    more » « less
  2. Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE. 
    more » « less
  3. The speed of elementary quantum gates ultimately sets the limit on the speed at which quantum circuits can operate. For a fixed physical interaction strength between two qubits, the speed of any two-qubit gate is limited even with arbitrarily fast single-qubit gates. In this work, we explore the possibilities of speeding up two-qubit gates beyond such a limit by expanding our computational space outside the qubit subspace, which is experimentally relevant for qubits encoded in multi-level atoms or anharmonic oscillators. We identify an optimal theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction strength and arbitrarily fast single-qudit gates. In addition, we find an experimentally feasible protocol using two parametrically coupled superconducting transmons that achieves this theoretical speed limit in a non-trivial way. We also consider practical scenarios with limited single-qudit drive strengths and off-resonant transitions. For such scenarios, we develop an open-source, machine learning assisted, quantum optimal control algorithm that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity. This work opens up a new avenue to speed up two-qubit gates when the physical interaction strength between qubits cannot be easily increased while extra states outside the qubit subspace can be well controlled. 
    more » « less
  4. Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species. 
    more » « less
  5. null (Ed.)
    High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer. While there has been much progress in suppressing single-qubit gate errors in superconducting qubit systems, two-qubit gates still suffer from error rates that are orders of magnitude higher. One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states. While this interaction is usually viewed as a nuisance, here we experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates in a coupled transmon qubit system. To implement arbitrary single-qubit rotations, we design a new protocol called the two-axis gate that is based on a three-part composite pulse. It rotates a single qubit independently of the state of the other qubit despite the strong ZZ-coupling. We achieve single-qubit gate fidelities as high as 99.1% from randomized benchmarking measurements. We then demonstrate both a CZ gate and a CNOT gate. Because the system has a strong ZZ-interaction, a CZ gate can be achieved by letting the system freely evolve for a gate time tg=53.8 ns. To design the CNOT gate, we utilize an analytical microwave pulse shape based on the SWIPHT protocol for realizing fast, low-leakage gates. We obtain fidelities of 94.6% and 97.8% for the CNOT and CZ gates respectively from quantum progress tomography. 
    more » « less