skip to main content


Title: Why the observed spin evolution of older-than-solar-like stars might not require a dynamo mode change
ABSTRACT

The spin evolution of main-sequence stars has long been of interest for basic stellar evolution, stellar ageing, stellar activity, and consequent influence on companion planets. Observations of older-than-solar late-type main-sequence stars have been interpreted to imply that a change from a dipole-dominated magnetic field to one with more prominent higher multipoles might be necessary to account for the data. The spin-down models that lead to this inference are essentially tuned to the Sun. Here, we take a different approach that considers individual stars as fixed points rather than just the Sun. We use a time-dependent theoretical model to solve for the spin evolution of low-mass main-sequence stars that includes a Parker-type wind and a time-evolving magnetic field coupled to the spin. Because the wind is exponentially sensitive to the stellar mass over radius and the coronal base temperature, the use of each observed star as a separate fixed point is more appropriate and, in turn, produces a set of solution curves that produces a solution envelope rather than a simple line. This envelope of solution curves, unlike a single line fit, is consistent with the data and does not unambiguously require a modal transition in the magnetic field to explain it.

 
more » « less
Award ID(s):
2020249
NSF-PAR ID:
10408398
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1583-1590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The stellar companion to the weak-line T Tauri star DI Tau A was first discovered by the lunar occultation technique in 1989 and was subsequently confirmed by a speckle imaging observation in 1991. It has not been detected since, despite being targeted by five different studies that used a variety of methods and spanned more than 20 yr. Here, we report the serendipitous rediscovery of DI Tau B during our Young Exoplanets Spectroscopic Survey (YESS). Using radial velocity data from YESS spanning 17 yr, new adaptive optics observations from Keck II, and a variety of other data from the literature, we derive a preliminary orbital solution for the system that effectively explains the detection and (almost all of the) non-detection history of DI Tau B. We estimate the dynamical masses of both components, finding that the large mass difference (q∼ 0.17) and long orbital period (≳35 yr) make the DI Tau system a noteworthy and valuable addition to studies of stellar evolution and pre-main-sequence models. With a long orbital period and a small flux ratio (f2/f1) between DI Tau A and B, additional measurements are needed for a better comparison between these observational results and pre-main-sequence models. Finally, we report an average surface magnetic field strength (B¯) for DI Tau A, of ∼0.55 kG, which is unusually low in the context of young active stars.

     
    more » « less
  2. Abstract

    The zero-age main sequence (ZAMS) is a critical phase for stellar angular momentum evolution, as stars transition from contraction-dominated spin-up to magnetic wind-dominated spin-down. We present the first robust observational constraints on rotation for FGK stars at ≈40 Myr. We have analyzed TESS light curves for 1410 members of five young open clusters with ages between 25 and 55 Myr: IC 2391, IC 2602, NGC 2451A, NGC 2547, and Collinder 135. In total, we measure 868 rotation periods, including 96 new, high-quality periods for stars around 1M. This is an increase of ten times the existing literature sample at the ZAMS. We then use theτ2method to compare our data to models for stellar angular momentum evolution. Although the ages derived from these rotation models do not match isochronal ages, we show that these observations can clearly discriminate between different models for stellar wind torques. Finally,τ2fits indicate that magnetic braking and/or internal angular momentum transport significantly impact rotational evolution even on the pre-main sequence.

     
    more » « less
  3. The stellar companion to the weak-line T Tauri star DI Tau A was first discovered by the lunar occultation technique in 1989 and was subsequently confirmed by a speckle imaging observation in 1991. It has not been detected since, despite being targeted by five different studies that used a variety of methods and spanned more than 20 yr. Here, we report the serendipitous rediscovery of DI Tau B during our Young Exoplanets Spectroscopic Survey (YESS). Using radial velocity data from YESS spanning 17 yr, new adaptive optics observations from Keck II, and a variety of other data from the literature, we derive a preliminary orbital solution for the system that effectively explains the detection and (almost all of the) non-detection history of DI Tau B. We estimate the dynamical masses of both components, finding that the large mass difference (q ∼ 0.17) and long orbital period (>35 yr) make the DI Tau system a noteworthy and valuable addition to studies of stellar evolution and pre-main sequence models. With a long orbital period and a small flux ratio (f2/f1) between DI Tau A and B, additional measurements are needed for a better comparison between these observational results and pre-main-sequence models. Finally, we report an average surface magnetic field strength (B¯) for DI Tau A, of ∼0.55 kG, which is unusually low in the context of young active stars. 
    more » « less
  4. ABSTRACT

    We present an extensive catalogue of BY Draconis (BY Dra)-type variables and their stellar parameters. BY Dra are main-sequence FGKM-type stars. They exhibit inhomogeneous starspots and bright faculae in their photospheres. These features are caused by stellar magnetic fields, which are carried along with the stellar disc through rotation and which produce gradual modulations in their light curves (LCs). Our main objective is to characterize the properties of BY Dra variables over a wide range of stellar masses, temperatures, and rotation periods. A recent study categorized 84 697 BY Dra variables from Data Release 2 of the Zwicky Transient Facility based on their LCs. We have collected additional photometric data from multiple surveys and performed broad-band spectral energy distribution fits to estimate stellar parameters. We found that more than half of our sample objects are of K spectral type, covering an extensive range of stellar parameters in the low-mass regime (0.1–1.3 M⊙). Compared with previous studies, most of the sources in our catalogue are rapid rotators, and so most of them must be young stars for which a spin-down has not yet occurred. We subdivided our catalogue based on convection zone depth and found that the photospheric activity index, Sph, is lower for higher effective temperatures, i.e. for thinner convective envelopes. We observe a broad range of photospheric magnetic activity for different spectral classes owing to the presence of stellar populations of different ages. We found a higher magnetically active fraction for K- than M-type stars.

     
    more » « less
  5. Abstract

    During the first half of their main-sequence lifetimes, stars rapidly lose angular momentum to their magnetized winds, a process known as magnetic braking. Recent observations suggest a substantial decrease in the magnetic braking efficiency when stars reach a critical value of the Rossby number, the stellar rotation period normalized by the convective overturn timescale. Cooler stars have deeper convection zones with longer overturn times, reaching this critical Rossby number at slower rotation rates. The nature and timing of the transition to weakened magnetic braking have previously been constrained by several solar analogs and two slightly hotter stars. In this Letter, we derive the first direct constraints from stars cooler than the Sun. We present new spectropolarimetry of the old G8 dwarfτCet from the Large Binocular Telescope, and we reanalyze a published Zeeman Doppler image of the younger G8 star 61 UMa, yielding the large-scale magnetic field strengths and morphologies. We estimate mass-loss rates using archival X-ray observations and inferences from Lyαmeasurements, and we adopt other stellar properties from asteroseismology and spectral energy distribution fitting. The resulting calculations of the wind braking torque demonstrate that the rate of angular momentum loss drops by a factor of 300 between the ages of these two stars (1.4–9 Gyr), well above theoretical expectations. We summarize the available data to help constrain the value of the critical Rossby number, and we identify a new signature of the long-period detection edge in recent measurements from the Kepler mission.

     
    more » « less