skip to main content


Title: Ag-tech, agroecology, and the politics of alternative farming futures: The challenges of bringing together diverse agricultural epistemologies
Abstract

Agricultural-technology (ag-tech) and agroecology both promise a better farming future. Ag-tech seeks to improve the food system through the development of high-tech tools such as sensors, digital platforms, and robotic harvesters, with many ag-tech start-ups promising to deliver increased agricultural productivity while also enhancing food system sustainability. Agroecology incorporates diverse cropping systems, low external resource inputs, indigenous and farmer knowledge, and is increasingly associated with political calls for a more just food system. Recently, demand has grown for the potentially groundbreaking benefits of their convergence, with the University of California, Santa Cruz (UCSC) attempting just such a union. Building on its combined expertise in engineering and agroecology, as well as a longstanding reputation as a socially progressive institution, university administrators believe that UCSC could produce a unique, socially just form of ag-tech designed for small, low-resource farmers—a rare contribution given ag-tech’s tendency to cater primarily to large-scale agribusiness. This paper examines the complexities of uniting agroecology and ag-tech through interviews with agroecologists, engineers, and social scientists involved in UCSC’s ag-tech initiative. Within the setting of a historically radical yet neoliberalizing university, I find that significant epistemic and structural barriers exist for agroecology and ag-tech to come together on an even playing field. This case study contributes to broader discussions of the future of food and farming by focusing on the contours and challenges of a widely called-for agricultural collaboration, highlighting its difficulty but also areas of possibility in a particularly rich, contested context.

 
more » « less
Award ID(s):
1749184
NSF-PAR ID:
10408399
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Agriculture and Human Values
Volume:
40
Issue:
3
ISSN:
0889-048X
Page Range / eLocation ID:
p. 913-928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  2. null (Ed.)
    Humanity faces a triple threat of climate change, biodiversity loss, and global food insecurity. In response, increasing the general adaptive capacity of farming systems is essential. We identify two divergent strategies for building adaptive capacity. Simplifying processes seek to narrowly maximize production by shifting the basis of agricultural production toward centralized control of socially and ecologically homogenized systems. Diversifying processes cultivate social-ecological complexity in order to provide multiple ecosystem services, maintain management flexibility, and promote coordinated adaptation across levels. Through five primarily United States focused cases of distinct agricultural challenges—foodborne pathogens, drought, marginal lands, labor availability, and land access and tenure—we compare simplifying and diversifying responses to assess how these pathways differentially enhance or degrade the adaptive capacity of farming systems in the context of the triple threat. These cases show that diversifying processes can weave a form of broad and nimble adaptive capacity that is fundamentally distinct from the narrow and brittle adaptive capacity produced through simplification. We find that while there are structural limitations and tradeoffs to diversifying processes, adaptive capacity can be facilitated by empowering people and enhancing ecosystem functionality to proactively distribute resources and knowledge where needed and to nimbly respond to changing circumstances. Our cases suggest that, in order to garner the most adaptive benefits from diversification, farming systems should balance the pursuit of multiple goals, which in turn requires an inclusive process for active dialogue and negotiation among diverse perspectives. Instead of locking farming systems into pernicious cycles that reproduce social and ecological externalities, diversification processes can enable nimble responses to a broad spectrum of possible stressors and shocks, while also promoting social equity and ecological sustainability. 
    more » « less
  3. null (Ed.)
    Amid climate change, biodiversity loss and food insecurity, there is the growing need to draw synergies between micro-scale environmental processes and practices, and macro-level ecosystem dynamics to facilitate conservation decision-making. Adopting this synergistic approach can improve crop yields and profitability more sustainably, enhance livelihoods and mitigate climate change. Using spatially explicit data generated through a public participatory geographic information system methodology (n = 37), complemented by spatial analysis, interviews (n = 68) and focus group discussions (n = 4), we explored the synergies between participatory farmer-to-farmer agroecology knowledge sharing, farm-level decisions and their links with macro-level prioritization of conservation strategies. We mapped farm conditions and ecosystem services (ES) of two village areas with varying knowledge systems about farming. Results of the farm-level analysis revealed variations in spatial perception among farmers, differences in understanding the dynamics of crop growth and varying priorities for extension services based on agroecological knowledge. The ES use pattern analysis revealed hotspots in the mapped ES indicators with similarities in both village areas. Despite the similarities in ES use, priorities for biodiversity conservation align with farmers’ understanding of farm processes and practices. Farmers with training in agroecology prioritized strategies that are ecologically friendly while farmers with no agroecology training prioritized the use of strict regulations. Importantly, the results show that agroecology can potentially contribute to biodiversity conservation and food security, with climate change mitigation co-benefits. The findings generally contribute to debates on land sparing and land sharing conservation strategies and advance social learning theory as it pertains to acquiring agroecological knowledge for improved yield and a sustainable environment. 
    more » « less
  4. Deforestation drives climate change and reinforces food insecurity in forest dependent communities. What drives deforestation varies by location and is shaped by livelihood systems. But how locals perceive restoration is crucial for developing restoration policies. Evidence suggests that applying sustainable farming strategies can potentially restore forests and sustain livelihoods. Applying a broad-based conceptualization of deforestation and restoration in policymaking, however, results in missed opportunities for addressing deforestation and restoration. Here, we explore the drivers of deforestation, the perceptions of restoration, and the challenges to restoration among smallholder farmers in northern Malawi and examine how agroecology can contribute to restoring degraded agroecosystems. Participants report agricultural land expansion, charcoal production, climate change, burnt brick production, and government subsidies as the major drivers of deforestation. We observed that although perceptions of forest restoration reflect farmers' traditional ecological knowledge (TEK) to include reclamation of degraded farmlands, reconstruction of native tree species, and replacement of felled trees on farmlands, there are challenges including splitting families to gain access to more subsidized fertilizers and food aid, embedded cultural practices, growing demand for charcoal in cities, and weak ecosystem governance structures that hinder the effectiveness of restoration efforts. We, however, do find that agroecological intensification can increase yield from smaller farmlands and allow for larger and longer-lasting fallows of spare lands which regenerate forests. Key overarching implications of these findings include the need to integrate livelihoods more explicitly into restoration plans, accounting for TEK in restoration policies in forest-dependent communities and encouraging the adoption of agroecology. 
    more » « less
  5. Rather than treating symptoms of a destructive agri-food system, agricultural policy, research, and advocacy need both to address the root causes of dysfunction and to learn from longstanding interventions to counter it. Specifically, this paper focuses on agricultural parity policies – farmer-led, government-enacted programs to secure a price floor and manage supply to prevent the economic and ecological devastation of unfettered corporate agro-capitalism. Though these programs remain off the radar in dominant policy, scholarship, and civil society activism, but in the past few years, vast swaths of humanity have mobilized in India to call for agri-food systems transformation through farmgate pricing and market protections. This paper asks what constitutes true farm justice and how it could be updated and expanded as an avenue for radically reimagining agriculture and thus food systems at large. Parity refers to both a pricing ratio to ensure livelihood, but also a broader farm justice movement built on principles of fair farmgate prices and cooperatively coordinated supply management. The programs and principles are now mostly considered “radical,” deemed inefficient, irrelevant, obsolete, and grievous government overeach—but from the vantage, we argue, of a system that profits from commodity crop overproduction and agroindustry consolidation. However, by examining parity through a producer-centric lens cognizant of farmers‘ ability, desire, and need to care for the land, ideas of price protection and supply coordination become foundational, so that farmers can make a dignified livelihood stewarding land and water while producing nourishing food. This paradox—that an agricultural governance principle can seem both radical and common sense, far-fetched and pragmatic—deserves attention and analysis. As overall numbers of farmers decline in Global North contexts, their voices dwindle from these conversations, leaving space for worldviews favoring de-agrarianization altogether. In Global South contexts maintaining robust farming populations, such policies for deliberate de-agrarianization bely an aggression toward rural and peasant ways of life and land tenure. Alongside the history of parity programs, principles, and movements in U.S., the paper will examine a vast version of a parity program in India – the Minimum Support Price (MSP) system, which Indian farmers defended and now struggle to expand into a legal right. From East India to the plains of the United States and beyond, parity principles and programs have the potential to offer a pragmatic direction for countering global agro-industrial corporate capture, along with its de-agrarianization, and environmental destruction. The paper explores what and why of parity programs and movements, even as it addresses the complexity of how international parity agreements would unfold. It ends with the need for global supply coordination grounded in food sovereignty and solidarity, and thus the methodological urgency of centering farm justice and agrarian expertise. 
    more » « less