skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Shear Wave Velocity Model of Salt Lake Valley via Rayleigh Wave Ellipticity across a Temporary Geophone Array
Abstract We construct a 3D shear velocity model of the Salt Lake Valley using Rayleigh waves excited by the 31 March 2020 Mw 6.5 central Idaho earthquake recorded on a 168-station temporary nodal geophone network and the 49-station permanent regional network. The temporary array—deployed in response to the March 18 Mw 5.7 Magna earthquake—serendipitously recorded clear surface waves between 10 and 20 s period from the Idaho event at ∼500 km epicentral distance, from which we measure both Rayleigh wave phase velocity and ellipticity (H/V ratio). In addition, we employ multicomponent earthquake coda cross correlation to extend the measurements down to 5 s period. Because Rayleigh wave ellipticity features outstanding shallow sensitivity, we invert for a 3D upper crust VS model of the Salt Lake Valley. Our model shows basin structure in general agreement with and complements the current Community Velocity Model, which is mostly constrained by borehole and gravity measurements. Our model thus provides critical information for future earthquake hazard assessment studies, which require detailed shallow velocity structure.  more » « less
Award ID(s):
1753362
PAR ID:
10408430
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Seismic Record
Volume:
2
Issue:
2
ISSN:
2694-4006
Page Range / eLocation ID:
127 to 136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study presents a new velocity model for the Salt Lake basin (SLB) in Utah, determined using data from permanent and temporary seismic stations located on top of the basin in the Salt Lake Valley (SLV) and nearby. A three‐dimensional (3D) velocity model for the SLB is needed for accurate predictions of future damaging earthquake ground shaking in the heavily urbanized SLV, including Salt Lake City. The SLB part of the Wasatch Front community velocity model (WFCVM) currently serves this purpose. However, the current WFCVM is based primarily on gravity and borehole data with relatively few seismic constraints below depths of 100 m. In this study we use the first peak of SLV receiver functions (RFs), which is sensitive to a strong impedance contrast at the base of a semi‐consolidated sediment layer. We jointly invert the RF waveform with Rayleigh wave ellipticity (H/V) and phase velocity measurements using the Markov chain Monte Carlo approach. Our new velocity model shows a greater combined thickness of unconsolidated and semi‐consolidated sediments, compared to the WFCVM, in the northeastern SLB between the west‐dipping East Bench fault section of the Wasatch fault and the antithetic West Valley fault zone to the west. We show that the new seismic velocity model explains the gravity patterns in the valley. The new velocity model from this study provides a basis for revising the SLB model in the WFCVM. 
    more » « less
  2. null (Ed.)
    Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City. 
    more » « less
  3. Abstract We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity. 
    more » « less
  4. Abstract Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation. 
    more » « less
  5. Abstract The Formosa array, with 137 broadband seismometers and ∼5 km station spacing, was deployed recently in Northern Taiwan. Here by using eight months of continuous ambient noise records, we construct the first high‐resolution three‐dimensional (3‐D) shear wave velocity model of the crust in the area. We first calculate multi‐component cross‐correlations to extract robust Rayleigh wave signals. We then determine phase velocity maps between 3 and 10 s periods using Eikonal tomography and measure Rayleigh wave ellipticity at each station location between 2 and 13 s periods. For each location, we jointly invert the two types of Rayleigh wave measurements with a Bayesian‐based inversion method for a one‐dimensional shear wave velocity model. All piecewise continuous one‐dimensional models are then used to construct the final 3‐D model. Our 3‐D model reveals upper crustal structures that correlate well with surface geological features. Near the surface, the model delineates the low‐velocity Taipei and Ilan Basins from the adjacent fast‐velocity mountainous areas, with basin geometries consistent with the results of previous geophysical exploration and geological studies. At a greater depth, low velocity anomalies are observed associated with the Linkou Tableland, Tatun Volcano Group, and a possible dyke intrusion beneath the Southern Ilan Basin. The model also provides new geometrical constraints on the major active fault systems in the area, which are important to understand the basin formation, orogeny dynamics, and regional seismic hazard. The new 3‐D shear wave velocity model allows a comprehensive investigation of shallow geologic structures in the Northern Taiwan. 
    more » « less