skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic Imaging of the Salt Lake Basin Using Joint Inversion of Receiver Functions and Rayleigh Wave Data
Abstract This study presents a new velocity model for the Salt Lake basin (SLB) in Utah, determined using data from permanent and temporary seismic stations located on top of the basin in the Salt Lake Valley (SLV) and nearby. A three‐dimensional (3D) velocity model for the SLB is needed for accurate predictions of future damaging earthquake ground shaking in the heavily urbanized SLV, including Salt Lake City. The SLB part of the Wasatch Front community velocity model (WFCVM) currently serves this purpose. However, the current WFCVM is based primarily on gravity and borehole data with relatively few seismic constraints below depths of 100 m. In this study we use the first peak of SLV receiver functions (RFs), which is sensitive to a strong impedance contrast at the base of a semi‐consolidated sediment layer. We jointly invert the RF waveform with Rayleigh wave ellipticity (H/V) and phase velocity measurements using the Markov chain Monte Carlo approach. Our new velocity model shows a greater combined thickness of unconsolidated and semi‐consolidated sediments, compared to the WFCVM, in the northeastern SLB between the west‐dipping East Bench fault section of the Wasatch fault and the antithetic West Valley fault zone to the west. We show that the new seismic velocity model explains the gravity patterns in the valley. The new velocity model from this study provides a basis for revising the SLB model in the WFCVM.  more » « less
Award ID(s):
1753362
PAR ID:
10581442
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City. 
    more » « less
  2. Earthquakes on the Salt Lake City Segment of the Wasatch fault (WFSLC) represent the most significant seismic hazard to the Salt Lake Valley, populated by 1 million+ people. The 2020 Magna, UT, earthquake, which likely occurred on the WFSLC, generated peak ground accelerations (PGAs) as large as 0.55 gin the Salt Lake Valley. Here, we present three-dimensional (3D) physics-based wave propagation simulations of the Magna earthquake sequence in the Wasatch Front Community Velocity Model (WFCVM) up to 10 Hz to better constrain both linear and nonlinear parameters in the soils of the Salt Lake Valley. We first calibrate the WFCVM via linear simulations of a M w 4.59 Magna aftershock, obtaining the best fit between the recordings and synthetics, including a statistical distribution of small-scale heterogeneities with 10% standard deviation and Q S = 0 . 05 V S for frequencies < 1  Hz and Q S = 0 . 05 V S f 0 . 4 for frequencies > 1  Hz ( V s in m/s). Spectral ratios from our simulations of the 2020 Magna mainshock using a finite-fault source model generally overestimate those for the recordings in the linear regime at higher frequencies, in particular at stations with the largest PGAs, suggesting the presence of nonlinear soil effects. Using a fully hysteretic multi-yield-surface 3D nonlinear modeling approach, we find that damping from the reference strain–depth relations proposed by Darendeli significantly reduces the bias in terms of spectral amplification ratios at stations with the shortest epicentral distances. We find an optimal fit between the recordings and nonlinear synthetics for reference strains at about 2 standard deviations below Darendeli’s relations, with reduction of the spectral amplification bias by more than a factor of two. Our findings suggest significant nonlinear soil effects in the Salt Lake Valley and provide a basis for improved seismic hazard analysis of the greater Salt Lake City region. 
    more » « less
  3. Abstract We construct a 3D shear velocity model of the Salt Lake Valley using Rayleigh waves excited by the 31 March 2020 Mw 6.5 central Idaho earthquake recorded on a 168-station temporary nodal geophone network and the 49-station permanent regional network. The temporary array—deployed in response to the March 18 Mw 5.7 Magna earthquake—serendipitously recorded clear surface waves between 10 and 20 s period from the Idaho event at ∼500 km epicentral distance, from which we measure both Rayleigh wave phase velocity and ellipticity (H/V ratio). In addition, we employ multicomponent earthquake coda cross correlation to extend the measurements down to 5 s period. Because Rayleigh wave ellipticity features outstanding shallow sensitivity, we invert for a 3D upper crust VS model of the Salt Lake Valley. Our model shows basin structure in general agreement with and complements the current Community Velocity Model, which is mostly constrained by borehole and gravity measurements. Our model thus provides critical information for future earthquake hazard assessment studies, which require detailed shallow velocity structure. 
    more » « less
  4. The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake. 
    more » « less
  5. Abstract Accurate seismic images of the crust are essential for assessing seismic hazards and elucidating tectonic processes that shape surface landforms. Although California and Nevada have been studied extensively using various seismic datasets and tomographic methods, the region lacks a seismic model that can accurately define both the shallow (<8 km) and deeper crust. We take the advantage of recent increases in seismic data coverage to build a new 3D shear wave speed model by jointly inverting Rayleigh wave ellipticity, phase velocity, and teleseismic P waveforms. In the Great Valley, the new model reveals an asymmetric basement, steeply dipping in the west and gently dipping in the east. Beneath its western margin, in the Coast Ranges, we resolve a wedge‐shaped, low‐velocity zone in the upper‐middle crust, interpreted as Franciscan Complex. Our images confirm that uplift of the western Great Valley and an eastward shift of its depositional center are caused by wedging and underthrusting of the complex during subduction. Across the Basin and Range, the resolved crust has an average thickness of 38 km in the southern half of the northern Basin and Range, about 5 km thicker than neighboring regions. The thickened crust overlaps with major volcanic centers of the mid‐Cenozoic ignimbrite flare‐up. This spatial correlation may suggest magmatic intrusions and underplating contributed to crustal growth and thickening prior to Miocene Basin and Range extension. Overall, the new model is consistent with active source studies in the region but provides a more comprehensive view of shallow and deep structures across this large and tectonically complex region. 
    more » « less