- PAR ID:
- 10408613
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 145
- Issue:
- 7
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Single-crystal calcium fluorite (CaF2) is widely used for transmissive optics in ultraviolet and vacuum ultraviolet (UV and VUV) wavelength applications because of its exceptional transmission performance. Generally, products using CaF2 are manufactured through finishing processes such as chemo-mechanical polishing (CMP), magnetorheological finishing (MRF) or ion-beam figuring (IBF) after performing precision cutting and grinding processes for profiling. However, CaF2 is known as a brittle material with high anisotropy, and subsurface damage is induced by each cutting process. But, the effects of surface integrity on the optical and functional performance of precision machined CaF2 has not been reported yet. In this research, a newly developed multiaxial adjustment system that can precisely align specimens is used in single-axis orthogonal cutting experiments with zero degree and negative rake angle diamond radius tools to prevent pre-machining and thus pre-damaging of single-crystal CaF2 specimens. Cutting forces evaluation via piezoelectric dynamometer acquisition as well as surface analysis by atomic force microscopy and white light microscopy has been performed. Finally, smooth surfaces due to ductile material removal mechanisms could be determined on all machined specimen surfaces.more » « less
-
null (Ed.)Abstract This article is written as a tribute to Professor Frederick Fongsun Ling 1927–2014. Single-point diamond machining, a subset of a broader class of processes characterized as ultraprecision machining, is used for the creation of surfaces and components with nanometer scale surface roughnesses, and submicrometer scale geometrical form accuracies. Its initial development centered mainly on the machining of optics for energy and defense related needs. Today, diamond machining has broad applications that include the manufacture of precision freeform optics for defense and commercial applications, the structuring of surfaces for functional performance, and the creation of molds used for the replication of a broad range of components in plastic or glass. The present work focuses on a brief review of the technology. First addressed is the state of current understanding of the mechanics that govern the process including the resulting forces, energies and the size effect, forces when cutting single crystals, and resulting cutting temperatures. Efforts to model the process are then described. The workpiece material response when cutting ductile and brittle materials is also included. Then the present state of the art in machine tools, diamond tools and tool development, various cutting configurations used, and some examples of diamond machined surfaces and components are presented. A discussion on the measurement of surface topography, geometrical form, and subsurface damage of diamond machined surfaces is also included.more » « less
-
The Japan Society for Precision Engineering (Ed.)Machining is in general conducted in multiple paths and thus residual stress and subsurface damage formed by previous cut may influence subsequent cutting. Ceramics materials are extremely brittle and prone to cracks. Ultra-precision machining with very small depth of cut enables ductile mode cutting. There have been various reports that critical depth of cut (CDC) for single crystal sapphire exists, where the ductile to brittle transition occurs. However, the CDC of subsequent cutting changes due to the influence of residual stress and subsurface damage by previous cut. This study investigates the indirect effect of residual stress and subsurface damage on the critical depth of cut of the second cut by analyzing the plastic deformation mechanisms activated during 2-step machining on A-plane of sapphire. It was found that the [1#100] machining orientation was most suitable since the critical depth of cut remained fairly constant due to dominant rhombohedral twinning activation during subsequent machining operations.more » « less
-
Abstract Functionally graded surfaces — surfaces with properties that are engineered to have spatial variations — have numerous applications such as micropumps, auto-mixers, and flow control for lab-on-chip devices. Manufacturing of functionally graded surfaces is an increasingly important topic of research. This study investigates the feasibility of creating a functionally graded surface during channeling of borosilicate glass by the electrochemical discharge machining (ECDM) process. The ability to create surface roughness gradients in microchannels during the machining process was demonstrated by modifying the input voltage, tool feed rate, and tool rotation speed. Microchannels with graded surface roughness having Ra values ranging from 0.35 to 4.07 μm were successfully machined on borosilicate glass by ECDM. Surface profiles were obtained via a stylus profilometer, and roughness values were calculated after detrending and applying a Gaussian filter. To demonstrate the process versatility, micro channels with increasing and decreasing Ra values were machined, one increasing from 1.43 μm to 4.07 μm, another decreasing from 3.29 μm to 1.10 μm. To demonstrate the process repeatability, a micro channel with similar surface roughness on both ends and a lower Ra value in the center was created. In this channel, the Ra value at the start is 0.35 μm, reducing to 0.24 μm, then rising again to 0.38 μm in the final section.
-
Duan, Xuexin ; Fu, Richard ; Guan, Weihua ; Guan, Yingchun ; Sun, Shuhui (Ed.)
With the growing demand for the fabrication of microminiaturized components, a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant. Single-crystal sapphire stands out as a promising material for microelectronic components, ultra-precision lenses, and semiconductor structures owing to its exceptional characteristics, such as high hardness, chemical stability, and optical properties. This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes (C-, R-, A-, and M-planes) of sapphire during ultra-precision orthogonal cutting. By employing a scanning electric microscope to examine the machined surfaces, the crack morphologies can be categorized into three distinct types on the basis of their distinctive features: layered, sculptured, and lateral. To understand the mechanism determining crack morphology, visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized. These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations. Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations.