skip to main content


This content will become publicly available on May 2, 2024

Title: Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS
We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure–property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.  more » « less
Award ID(s):
1847389
NSF-PAR ID:
10408790
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
18
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yielding of the particulate network in colloidal gels under applied deformation is accompanied by various microstructural changes, including rearrangement, bond rupture, anisotropy, and reformation of secondary structures. While much work has been done to understand the physical underpinnings of yielding in colloidal gels, its topological origins remain poorly understood. Here, employing a series of tools from network science, we characterize the bonds using their orientation and network centrality. We find that bonds with higher centralities in the network are ruptured the most at all applied deformation rates. This suggests that a network analysis of the particulate structure can be used to predict the failure points in colloidal gels a priori.

     
    more » « less
  2. Geological carbon sequestration provides permanent CO2 storage to mitigate the current high concentration of CO2 in the atmosphere. CO2 mineralization in basalts has been proven to be one of the most secure storage options. For successful implementation and future improvements of this technology, the time-dependent deformation behavior of reservoir rocks in presence of reactive fluids needs to be studied in detail. We conducted load stepping creep experiments on basalts from the CarbFix site (Iceland) under several pore fluid conditions (dry, H2O-saturated and H2O+CO2-saturated) at temperature, T≈80 °C and effective pressure, Peff = 50 MPa, during which we collected mechanical, acoustic and pore fluid chemistry data. We observed transient creep at stresses as low as 11% of the ultimate failure strength, well below the stress level at the onset of bulk dilatancy. Acoustic emissions (AEs) correlated strongly with strain accumulation, indicating that the creep deformation was a brittle process in agreement with microstructural observations. The rate and magnitude of AEs were higher in fluid-saturated experiments than in dry conditions. We infer that the predominant mechanism governing creep deformation is time- and stress-dependent sub-critical dilatant cracking. Our results suggest that the presence of aqueous fluids exerts first order control on creep deformation of basaltic rocks, while the composition of the fluids plays only a secondary role under the studied conditions. 
    more » « less
  3. The influence of the pore topology and polymer properties on mechanical characteristics of asymmetric polyethersulfone (PES) and symmetric polyvinylidene fluoride (PVDF) microfiltration membranes was investigated by conducting elongation, creep, stress relaxation, small-amplitude oscillatory and bubble point pressure tests. The main aspects of the membrane stress-strain curves were found to be similar despite significant differences in the pore topology and polymer properties. While the Kelvin-Voigt model for solid polymers described the membrane viscoelastic response below the transition to ductile yielding, the stress-strain curves of membranes and solid polymers above the yield point appeared to be drastically different. All tested membranes demonstrated weak strain hardening, low sensitivity to strain rate, significant elastic recovery, stress relaxation and reduction of the bubble point pressure with accumulation of plastic deformation. Therefore, tensile stresses exerted on a membrane under assembling and process conditions should be smaller than the yield stress to assure that they will not impair filter performance. The novelty of our approach is the use of models for perforated plates to evaluate membrane mechanical properties as ductile yielding for both proceeds via localized plastic deformation around pores. Presented results provide a reliable framework for development of membranes with properties tailored to applications. 
    more » « less
  4. Abstract. Geological carbon sequestration provides permanentCO2 storage to mitigate the current high concentration of CO2 inthe atmosphere. CO2 mineralization in basalts has been proven to be oneof the most secure storage options. For successful implementation and futureimprovements of this technology, the time-dependent deformation behavior ofreservoir rocks in the presence of reactive fluids needs to be studied indetail. We conducted load-stepping creep experiments on basalts from theCarbFix site (Iceland) under several pore fluid conditions (dry,H2O saturated and H2O + CO2 saturated) at temperature,T≈80 ∘C and effective pressure, Peff=50 MPa,during which we collected mechanical, acoustic and pore fluid chemistrydata. We observed transient creep at stresses as low as 11 % of thefailure strength. Acoustic emissions (AEs) correlated strongly with strainaccumulation, indicating that the creep deformation was a brittle process inagreement with microstructural observations. The rate and magnitude of AEswere higher in fluid-saturated experiments than in dry conditions. We inferthat the predominant mechanism governing creep deformation is time- andstress-dependent subcritical dilatant cracking. Our results suggest thatthe presence of aqueous fluids exerts first-order control on creepdeformation of basaltic rocks, while the composition of the fluids playsonly a secondary role under the studied conditions. 
    more » « less
  5. Abstract

    The present work is the first to undertake systematicin situobservations of the microstructural changes on samples taken at ∼10‐m intervals along the length of a 80‐m firn core, extracted at Summit, Greenland (72°35’ N, 38°25’ W) in June, 2017, under interrupted load and at a strain rate of ∼8 × 10−5s−1at −10°C, using a X‐ray micro‐computed tomograph. Several noteworthy features of the densification were found: the ice particle size increases, while the specific surface area, the total porosity, the pore size, and the structure model index (a measure of convexity/concavity of ice surface) decreases. The results were used to formulate semi‐empirical models (valid in the stress range of ∼0.05–2.15 MPa) that can be used to quantitatively assess the relative contributions of lattice diffusion (LD) and grain boundary diffusion (GBD) to the densification of polar firn. We found that 0.28 and 2.15 MPa are two critical stresses, which represent the start and end of LD as the dominant deformation mechanism to the densification of polar firn under the interrupted increasing loads. This bimodality when LD dominates implies that stress is not the only factor governing the densification of polar firn. On the other hand, GBD dominates the densification of polar firn both for stresses lower than 0.28 MPa and greater than 2.15 MPa. At stresses greater than 2.41 MPa, the firn specimens either fractured or other deformation mechanisms dominated, e.g., grain boundary sliding or power‐law dislocation creep.

     
    more » « less