Objective: The interaction of ethnicity, progression of cognitive impairment, and neuroimaging biomarkers of Alzheimer’s Disease remains unclear. We investigated the stability in cognitive status classification (cognitively normal [CN] and mild cognitive impairment [MCI]) of 209 participants (124 Hispanics/Latinos and 85 European Americans). Methods: Biomarkers (structural MRI and amyloid PET scans) were compared between Hispanic/Latino and European American individuals who presented a change in cognitive diagnosis during the second or third follow-up and those who remained stable over time. Results: There were no significant differences in biomarkers between ethnic groups in any of the diagnostic categories. The frequency of CN and MCI participants who were progressors (progressed to a more severe cognitive diagnosis at follow-up) and non-progressors (either stable through follow-ups or unstable [progressed but later reverted to a diagnosis of CN]) did not significantly differ across ethnic groups. Progressors had greater atrophy in the hippocampus (HP) and entorhinal cortex (ERC) at baseline compared to unstable non-progressors (reverters) for both ethnic groups, and more significant ERC atrophy was observed among progressors of the Hispanic/Latino group. For European Americans diagnosed with MCI, there were 60% more progressors than reverters (reverted from MCI to CN), while among Hispanics/Latinos with MCI, there were 7% more reverters than progressors. Binomial logistic regressions predicting progression, including brain biomarkers, MMSE, and ethnicity, demonstrated that only MMSE was a predictor for CN participants at baseline. However, for MCI participants at baseline, HP atrophy, ERC atrophy, and MMSE predicted progression.
more »
« less
Pattern of Altered Magnetization Transfer Rate in Alzheimer’s Disease
Background: Biomarkers for Alzheimer’s disease (AD) are crucial for early diagnosis and treatment monitoring once disease modifying therapies become available. Objective: This study aims to quantify the forward magnetization transfer rate (kfor) map from brain tissue water to macromolecular protons and use it to identify the brain regions with abnormal kfor in AD and AD progression. Methods: From the Cardiovascular Health Study (CHS) cognition study, magnetization transfer imaging (MTI) was acquired at baseline from 63 participants, including 20 normal controls (NC), 18 with mild cognitive impairment (MCI), and 25 AD subjects. Of those, 53 participants completed a follow-up MRI scan and were divided into four groups: 15 stable NC, 12 NC-to-MCI, 12 stable MCI, and 14 MCI/AD-to-AD subjects. kfor maps were compared across NC, MCI, and AD groups at baseline for the cross-sectional study and across four longitudinal groups for the longitudinal study. Results: We found a lower kfor in the frontal gray matter (GM), parietal GM, frontal corona radiata (CR) white matter (WM) tracts, frontal and parietal superior longitudinal fasciculus (SLF) WM tracts in AD relative to both NC and MCI. Further, we observed progressive decreases of kfor in the frontal GM, parietal GM, frontal and parietal CR WM tracts, and parietal SLF WM tracts in stable MCI. In the parietal GM, parietal CR WM tracts, and parietal SLF WM tracts, we found trend differences between MCI/AD-to-AD and stable NC. Conclusion: Forward magnetization transfer rate is a promising biomarker for AD diagnosis and progression.
more »
« less
- Award ID(s):
- 2123061
- PAR ID:
- 10408840
- Date Published:
- Journal Name:
- Journal of Alzheimer's Disease
- Volume:
- 88
- Issue:
- 2
- ISSN:
- 1387-2877
- Page Range / eLocation ID:
- 693 to 705
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Event-based models (EBM) provide an important platform for modeling disease progression. This work successfully extends previous EBM approaches to work with larger sets of biomarkers while simultaneously modeling heterogeneity in disease progression trajectories. We develop and validate the s-SuStain method for scalable event-based modeling of disease progression subtypes using large numbers of features. s-SuStaIn is typically an order of magnitude faster than its predecessor (SuStaIn). Moreover, we perform a case study with s-SuStaIn using open access cross-sectional Alzheimer’s Disease Neuroimaging (ADNI) data to stage AD patients into four subtypes based on dynamic disease progression. s-SuStaIn shows that the inferred subtypes and stages predict progression to AD among MCI subjects. The subtypes show difference in AD incidence-rates and reveal clinically meaningful progression trajectories when mapped to a brain atlas.more » « less
-
Abstract It has become consensus that mild cognitive impairment (MCI), one of the early symptoms onset of Alzheimer’s disease (AD), may appear 10 or more years after the emergence of neuropathological abnormalities. Therefore, understanding the progression of AD biomarkers and uncovering when brain alterations begin in the preclinical stage, while patients are still cognitively normal, are crucial for effective early detection and therapeutic development. In this paper, we develop a Bayesian semiparametric framework that jointly models the longitudinal trajectory of the AD biomarker with a changepoint relative to the occurrence of symptoms onset, which is subject to left truncation and right censoring, in a heterogeneous population. Furthermore, unlike most existing methods assuming that everyone in the considered population will eventually develop the disease, our approach accounts for the possibility that some individuals may never experience MCI or AD, even after a long follow-up time. We evaluate the proposed model through simulation studies and demonstrate its clinical utility by examining an important AD biomarker, ptau181, using a dataset from the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) study.more » « less
-
A transfer learning approach based on gradient boosting machine for diagnosis of Alzheimer’s diseaseEarly detection of Alzheimer’s disease (AD) during the Mild Cognitive Impairment (MCI) stage could enable effective intervention to slow down disease progression. Computer-aided diagnosis of AD relies on a sufficient amount of biomarker data. When this requirement is not fulfilled, transfer learning can be used to transfer knowledge from a source domain with more amount of labeled data than available in the desired target domain. In this study, an instance-based transfer learning framework is presented based on the gradient boosting machine (GBM). In GBM, a sequence of base learners is built, and each learner focuses on the errors (residuals) of the previous learner. In our transfer learning version of GBM (TrGB), a weighting mechanism based on the residuals of the base learners is defined for the source instances. Consequently, instances with different distribution than the target data will have a lower impact on the target learner. The proposed weighting scheme aims to transfer as much information as possible from the source domain while avoiding negative transfer. The target data in this study was obtained from the Mount Sinai dataset which is collected and processed in a collaborative 5-year project at the Mount Sinai Medical Center. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was used as the source domain. The experimental results showed that the proposed TrGB algorithm could improve the classification accuracy by 1.5 and 4.5% for CN vs. MCI and multiclass classification, respectively, as compared to the conventional methods. Also, using the TrGB model and transferred knowledge from the CN vs. AD classification of the source domain, the average score of early MCI vs. late MCI classification improved by 5%.more » « less
-
Alzheimer’s disease (AD) presents significant challenges in clinical practice due to its heterogeneous manifestation and variable progression rates. This work develops a comprehensive anatomical staging framework to predict progression from mild cognitive impairment (MCI) to AD. Using the ADNI database, the scalable Subtype and Stage Inference (s-SuStaIn) model was applied to 118 neuroanatomical features from cognitively normal (n = 504) and AD (n = 346) participants. The framework was validated on 808 MCI participants through associations with clinical progression, CSF and FDG-PET biomarkers, and neuropsychiatric measures, while adjusting for common confounders (age, gender, education, and APOE ε4 alleles). The framework demonstrated superior prognostic accuracy compared to traditional risk assessment (C-index = 0.73 vs. 0.62). Four distinct disease subtypes showed differential progression rates, biomarker profiles (FDG-PET and CSF Aβ42), and cognitive trajectories: Subtype 1, subcortical-first pattern; Subtype 2, executive–cortical pattern; Subtype 3, disconnection pattern; and Subtype 4, frontal–executive pattern. Stage-dependent changes revealed systematic deterioration across diverse cognitive domains, particularly in learning acquisition, visuospatial processing, and functional abilities. This data-driven approach captures clinically meaningful disease heterogeneity and improves prognostication in MCI, potentially enabling more personalized therapeutic strategies and clinical trial design.more » « less
An official website of the United States government

