skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An intense precipitation event causes a temperate forested drainage network to shift from N2O source to sink
Award ID(s):
1846855
PAR ID:
10409061
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2environment while transgenerational studies are rare.We aimed to determine transgenerational growth responses in plants after exposure to high CO2by investigating the direct progeny when returned to baseline CO2levels.We found that both the flowering plantArabidopsis thalianaand seedless nonvascular plantPhyscomitrium patenscontinue to display accelerated growth rates in the progeny of plants exposed to high CO2. We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response.More specifically, the pathway of RNA‐directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2exposure. 
    more » « less
  2. Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands. 
    more » « less
  3. Abstract The catalytic hydrothermal liquefaction of biomass under a hydrogen atmosphere is a promising technology to produce stable biocrude oil as a sustainable alternative to petroleum crude. A series of iron‐based non‐noble mix metal‐oxide‐on‐silica catalysts were evaluated to mimic the natural transformation that may have led to the conversion of terrestrial biomass to fossilized fuels. Switchgrass powder was liquefied to a stable bio‐oil with a 71.2% yield by using FeOx/SiO2catalyst in ethanol under a 5.5 MPa hydrogen atmosphere at 210 °C. The use of Fe‐MOx/SiO2(M = V, Mn, Co, Ni, Cu and Mo) type bimetallic oxide catalysts instead of FeOx/SiO2can produce improvements in liquefaction yields by using Mn, Co, Ni, and Cu as the second metal. The highest liquefaction yield of 78.8% was observed with the Fe‐CuOx/SiO2catalyst. Liquefaction oils were formed that were composed of complex mixtures of C6‐C12 alcohols, esters, aldehydes, and phenols. The lignin products:holocellulose products ratio changed in the range 0.35 to 0.15 and the composition of oils changed significantly with the use of mixed metal oxides in place of single metal FeOx/SiO2The most effective catalyst, Fe‐CuOx/SiO2could be reused in five cycles with a small loss in liquefaction yield from 78.8% to 70.0% after four reuse cycles and after regeneration of the catalyst at 500 °C for 3 h in air. 
    more » « less
  4. Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting. 
    more » « less